국가 미래 에너지를 책임지는 연구원

Evaluation Work at KAERI

Young-Ouk LEE (KAERI) H.I. KIM (KAERI)

Background: Neutron Capture Gamma Ray Spectra

Calculation is based on

- Hauser-Feshbach statistical model
- Gamma-ray strength function
- Nuclear level densities

Photonuclear data for Giant Resonance

- ✓ Standard Lorentzian (SLO) :
- Enhanced Generalized Lorentzian (EGLO)
 - Modified Lorentzian (MLO)
 - Generalized Fermi Liquid (GFL)
- Insufficient to describe the gamma-ray strength function below nucleon binding energy

Measurements of Capture gamma-ray spectra

- Improve gamma-ray strength function
- Reasonable estimation for gamma-ray spectra for nuclides with no experimental data.

Gamma-ray Strength function & Spectrum

Neutron Capture Gamma-ray Spectra

CSWEG 2007

Future Work

More measurement for gamma-ray spectra

- Develop systematics for gamma-ray strength functions in low energy region: Similar to GDR parameters
- Improve nuclear data files for nuclides with no measurement

Publication

Hyeong II KIM, Mi Ja YI and Young-Ouk LEE,

"Evaluation of Neutron Capture Gamma-ray Spectra for ⁸⁹Y, ⁹³Nb, ¹²⁷I, ¹³³Cs, ¹⁴¹Pr, ¹⁹⁷Au, ^{nat}TI, and ²⁰⁹Bi", *Journal of Nuclear Science and Technology*,

Vol. 44, No.8, pp. 1117-1125, 2007

Background: New Evaluation on p+27Al up to 150 MeV

- Proton Accelerator Development Project (PEFP) requires proton nuclear data with higher accuracy relevant to the radiological safety and the accelerator and Beam unitization.
 - \rightarrow A complete set of cross sections, yield, energy spectra and angular distributions in order to be used in transport applications
 - Evaluation of ²⁷Al for proton incident energy up to 150 MeV
 - ✓ AI-27 in ENDF/B-VII : by M. Chadwick (LANL), 1997
 - ✓ AI-27 in JENDL–HE : by Y.O Lee (KAERI), 1998

Up-to-date theories, models, measurements and evaluation methodologies were applied

A procedure applied to p+AI Evaluation

More measured points required

Calculated channels in question (measurement or reaction model ?)

New Evaluation on Neutron Induced Reactions for ^{182,183,184,186}W

- Tungsten as a prime candidate of plasma facing materials (PFM) has to withstand heat and particle fluxes from the plasma in the environment of a fusion system.
- Existing libraries such as ENDF/B-VII, JEFF-3.1 and JENDL-3.3 failed to reproduce the measured data
- The integral tests of neutron production from the existing libraries showed remarkable discrepancies with leakage neutron measurements of OKTAVIAN.
- Up-to-data theories, models, measurements and evaluation methodologies were applied

A procedure applied for n+W evaluation Analysis Å Exp. data Choice ENDF-6 Comparison formatted file Models Theoretical Calculation & **EMPIRE** Parameters NJOY MCNP Benchmark

Total Cross Section for ¹⁸²W

Total Cross Section for ¹⁸³W

Total Cross Section for ¹⁸⁴W

Total Cross Section for ¹⁸⁶W

Angular Distributions of Elastic Scattering for 182,184W

(n,n) cross sections for 182,183,184,186W

(n,g) cross sections for 182,183,184,186W

(n,n') cross sections for 182,183,184,186W

CSWEG 2007

(n,2n) cross sections for 182,183,184,186W

Angle-Integrated Neutron spectra for ¹⁸⁴W

Energy-Angle Neutron spectra for ¹⁸⁴W

Integral Tests: Neutron Leakage

Integral Tests: Gamma Leakage

- Neutron Capture Gamma Ray Spectra ⁸⁹Y, ⁹³Nb, ¹²⁷I, ¹³³Cs, ¹⁴¹Pr, ¹⁹⁷Au, ^{nat}TI, ²⁰⁹Bi with new Gamma-ray strength functions in low energy region
- Proton induced nuclear data accurately evaluated for AI-27 in the energy region up to 150 MeV.
- neutron cross sections for ^{182,183,184,186}W evaluated in the neutron energies from 0.1 MeV to 20 MeV resolving discrepancies between calculations and measurements of several fusion shielding benchmarks

