Impact of ENDF/B-VII.0 for AECL

Ken Kozier & Dimitar Altiparmakov AECL – Chalk River Laboratories CSEWG annual meeting - BNL 2007 November 6-8

AECL ENDF/B-VII.0 implementation status

- <u>Kudos</u> to: Ramon Arcilla & NNDC, LANL & RSICC for processing & distributing ENDF/B-VII.0 as MCNP-useable ACE-format files
 - Provides a standard reference library data set & facilitated early testing
- Early testing of ENDF/B-VII.0 against ZED-2 D₂O/air-cooled Natural Uranium (NU) critical experiments indicated (see ND-2007 paper)
 - Systematic increase in MCNP k_{eff} by ~4.3 mk, improving agreement with measurement (except for ZEEP NU metal lattices); mainly due to ²³⁸U changes
 - Small (0.4 mk), consistent reduction of MCNP D₂O Coolant Void Reactivity (CVR) calculation bias when Thermal Scattering Law (TSL; $S(\alpha,\beta)$) data for O&U in UO₂ available with ENDF/B-VII.0 are used
- Additional comparisons against AECL critical measurements exemplify the benefits of ENDF/B-VII.0 & are considered further here (summary submitted to PHYSOR-2008)
 - ZED-2: H₂O/air-cooled Slightly Enriched Uranium (SEU; 0.95 wt% ²³⁵U)/ Recovered Uranium (RU; 0.96 wt% ²³⁵U)
 - MAPLE (Multipurpose Applied Physics Lattice Experiment): initial startup commissioning measurements
- Current AECL ENDF/B-VII.0 implementation status
 - Recommend early adoption of ENDF/B-VII.0 for all AECL applications: CANDU; ACR (Advanced CANDU Reactor); MAPLE; ZED-2; NRU (50-year old National Research Universal)
 - <u>But</u> still need LEAPR input files or input specifications from LANL for TSL libraries: H in H₂O; D in D₂O; O & U in UO₂; & Al to be able to generate multi-temperature data libraries with NJOY at the temperatures needed for specific applications & for accident analyses

Zero Energy Deuterium (ZED-2)

- Large D₂O-moderated fuel lattice
- Cylindrical aluminum tank with 336 cm ID and 334 cm deep
- Surrounded by graphite reflector, 60 cm radially and 90 cm bottom
- Fuel rods and/or channels are suspended from steel beams at top of calandria at various spacings:
 - 28.6 cm for CANDU
 - 24.0 cm for ACR-1000
- Criticality achieved by adjusting moderator level within ±0.2 cm
- Fuel channel consists of calandria tube, pressure tube, fuel assembly and coolant (D₂O, H₂O or air).

A

ZED-2, Chalk River Labs

SEU/RU Flux-Map Experiments

- 52 fuel channels arranged in a square lattice with a spacing of 20 cm or 24 cm.
- Channel consists of five 43-pin fuel assemblies surrounded by CANDU-sized aluminum PT/CT:
 - 48 channels use 0.95% SEU
 - 4 channels use 0.96% RU (recovered uranium)
- H₂O or air (void) coolant.
- D₂O moderator height adjusted to achieve criticality.
- Cu and In-Al foil activation measurements performed axially and radially.

ZED-2 SEU/RU H₂O/air-cooled critical measurements

 Dramatic improvement in both k_{eff} & CVR bias when ENDF/B-VII.0 used with TSL data for O&U in UO₂

A

MAPLE dedicated isotope production reactors

- Two 10-MW_t MAPLE reactors to replace NRU mainly for fission-product ⁹⁹Mo production
- Complex, compact initial start-up core consisting of HEU (93.0 wt% ²³⁵U) UO₂ target fuel assemblies, 36-element & 18-element LEU (19.75 wt% ²³⁵U) driver fuel assemblies & 36-el. DU (Depleted Uranium) assemblies

MAPLE Reactor

MAPLE 30°C isothermal critical results

- MCNP5 k_{eff} within ~1 mk using ENDF/B-VII.0
- ~7% of total n captures occur in Zr (zirc-4: core-reflector boundary; hex flow tubes; central support rods; HEU clad & structures)
- Reactivity impacts of major changes to ⁹⁰Zr (51.5% abundance) & ⁹¹Zr (11.2% abundance) capture cross sections

tend to cancel out

Changes to Zr thermal captures

- Huge increase in ⁹⁰Zr capture cross section, but low net reactivity impact due to opposing change to ⁹¹Zr capture cross section
- Less incentive to develop Zr materials enriched in ⁹⁰Zr

MAPLE MCNP5 results for 30°C isothermal core

A

	Particle weight loss	Particle weight loss		
Case	to ⁹⁰ Zr captures	to ⁹¹ Zr captures	Calculated k_{eff}	$\Delta k_{e\!f\!f}$ (mk)
ENDF/B-VII.0	8.81E-03	2.15E-02	1.000725 ± 0.000037	-
reference				
ENDF/B-VI.5	2.06E-03	2.94E-02	0.997460 ± 0.000050	-3.26 ±
				0.06
ENDF/B-VII.0 with				
⁹⁰ Zr from ENDF/B-	2.07E-03	2.18E-02	1.002985 ± 0.000053	2.26±
VI.5				0.06
ENDF/B-VII.0 with				
⁹¹ Zr from ENDF/B-	8.68E-03	2.87E-02	0.997451 ± 0.000100	-3.27±
VI.5				0.06

Other nuclear data items of potential interest

- 3-way collaboration (IRMM-GELINA, ORNL, AECL) to address new (n,d) energy-angle elastic scattering evaluation
 - AECL to fund additional nuclear theory calculations incorporating: alternate nuclear potential models, magnetic interaction & 3-body forces
- New RPI measurements for Gd, did not make it into ENDF/B-VII.0
 - Qualitative agreement with ZED-2 measurements; may confirm changes
- Some ZED-2 In (Indium) flux-scan measurements appear to show small systematic discrepancies relative to MCNP simulations; need to simulate with ENDF/B-VII.0

AFCL