CSEWG/USNDP, BNL, Nov. 6-9, 2007

Beta-Delayed Neutron Spectra

T. Kawano, P. Möller, W.B. Willson T-16, LANL

β-Delayed Neutron

Theory Developed

- Once fission takes place, two fission fragments (FF) emit prompt neutrons and γ-rays, and they de-excite to their ground state.
- Some fragments β -decay to more stable nuclei, and they can emit a delayed neutron if the final state excitation energy is higher than the neutron separation energy.

- neutron and γ emission range : statistical Hauser-Feshbach model
- nuclear structure data are taken from ENSDF

Gamow-Teller Strength

Data Smoothing and Re-normalization

- Moller's calculation includes pairs of (E_x, b) , where E_x is the excitation energy of the daughter nucleus, and *b* is the branching ratio to the state.
- The strength distribution is smoothed by a Gaussian with the width Γ of 30 keV (empirical value),
- and the total strength is re-normalized by including the transitions to the state having the higher energy than the neutron separation energy S_b .

$$\rho(E) \propto \sum_{i} b^{(i)} \exp\left\{-\frac{[E_x^{(i)} - (E+S_b)]^2}{2\Gamma^2}\right\}, \quad 0 \le E \le Q_\beta - S_b$$
(1)

β-Delayed Neutron Emission

Neutron emission from the daughter nucleus

- We assume that the excited state after β -decay is a compound state, having a fixed J value, $|I 1| \le J \le I + 1$, where I is the spin of precursor.
- Neutron and γ -ray emissions are calculated with the statistical Hauser-Feshbach theory (modified CoH code).
- The γ -ray emission competition is included, except for the $(n, \gamma n)$ process.

Beta-Delayed Neutron Spectra

• Los Alamos

Beta-Delayed Neutron Spectra, cont'd

ENDF decay library gives a simple evaporation spectrum.

Beta-Delayed Neutron Spectra, Isomer

Comparison with ENDF Decay Library

Number of Calculated Spectra

Total Calculations	
ground state	264
isomer	7
total	271

Adopted from ENDFbased on experimental data36 $Q_{\beta} \leq S_n$ cases13total49

Plans, etc

- 271 49 = 222 data are newly evaluated.
- The calculated delayed neutron spectra, which are purely theoretical predictions, agree with those evaluations in the ENDF decay-data library that are based on experimental data.
- The delayed- γ calculations in progress
 - A new code CGM (Calculation of Gamma Multiplicity)
- The same technique can be applied to calculate the β -delayed fission process.

