Role of ENSDF in cross section evaluations

M. Herman

National Nuclear Data Center Brookhaven National Laboratory

Email: mwherman@bnl.gov

Brookhaven Science Associates

Structure data in x-sec. measurements

Activation measurements

- Decay modes
- Decay schemes
- Half lives
- Internal conversion coefficients
- In-beam measurements (e.g., GEANIE)
 - (Decay schemes)²
 - Internal conversion coefficients

Mike Herman

CSEWG – 2007 BNL, November 6 – 8, 2007

⁵⁶25^{Mn}31 Q(gs)=3695.5 keV 4

Structure data in reaction calculations

Structure Quantity = = = = = = > Reaction Quantity								
Massas	Q-values	Reaction thresholds						
11123553		Excitation energies						
Ground state	Moments of inertia	Lev. dens. rotational enhancement						
deformations		Lev. dens. spin distribution						
	GDR splitting	γ -ray strength function						
Quadrupole	Dynamic deformations for DWBA and CC	Absorption cross sections						
moments (Q),		Inelastic cross sections						
B(E2), B(E3)		Transmission coefficients						

Structure data in reaction calculations

Structure Quantity = = = = = = > Reaction Quantity								
Shall corrections		Level densities						
Shell corrections		Fission barriers						
Half-lives		Define isomers						
	Levels	Level densities below B _n						
	Level spins (parities)	Spin (parity) distribution of level densities below B _n						
Level schemes		CC coupling, DWBA and MSD						
	Collective levels	Vibrational enhancement of level densities						
	γ -transitions	γ-spectra						

Reference Input Parameter Library (RIPL)

CSEWG – 2007 BNL, November 6 – 8, 2007 ENSDF's Q, B(E2), and B(E3) converted to β_2 , β_3 using:

$$Q = Q_0 \frac{(3K^2 - 1)(I + 1)}{(I + 1)(2I + 3)}$$
$$Q_0 = \frac{3Zr_0^2\beta}{\sqrt{5\pi}}(1 + 0.16\beta + ...)$$
$$B(E2) = \left(\frac{3R_0^2 Z\beta_2}{4\pi}\right)^2$$
$$B(E3) = \left(\frac{3R_0^3 Z\beta_3}{4\pi}\right)^2$$
$$R_0 = 0.12A^{1/3}$$

Recommended deformation parameters for 1643 collective levels (including fictitious!)

#		1	Exe	ited-level	deform	nati	on	parameters	
#	Z	A	Ε1	Ex	J.	P	L	beta	Reference
#				[MeV]					
#-									
	3	7	Li	0.477612	0.5	-1	2	0.763388	ENSDF(BE2)
	4	10	Be	3.368030	2.0	1	2	1.140000	Raman2
	6	10	¢	3.353600	2.0	1	2	0.830000	Raman2
	6	12	¢	4.438900	2.0	1	2	0.600000	JENOL-3.2
	6	12	¢	4.438910	2.0	1	2	0.582000	Raman2
	6	12	¢	9.641000	3.0	-1	3	0.400000	JENOL-3.2
	6	12	¢	9.641000	3.0	-1	3	0.831482	Kibedi
	6	14	¢	6.728000	3.0	-1	3	0.408090	Kibedi
	6	14	C	7.012000	2.0	1	2	0.360000	Raman2
	8	16	0	6.130000	3.0	-1	3	0.728519	Kibedi
	8	16	0	6.130400	3.0	-1	3	0.640000	JENDL-3.2
	8	16	0	6.917100	2.0	1	2	0.364000	Raman2
	8	16	0	6.917100	2.0	1	2	0.400000	JENOL-3.2
	8	18	0	1.982070	2.0	1	2	0.355000	Raman2
	8	18	0	5.098000	3.0	-1	3	0.595131	Kibedi
	8	20	0	1.673680	2.0	1	2	0.261000	Raman2
	8	20	0	5.614000	3.0	-1	3	0.348769	Kibedi
	8	22	0	3,190000	2.0	1	2	0.208000	Raman2

Mike Herman

CSEWG – 2007 BNL, November 6 – 8, 2007

RIPL: levels segment

- Discrete level schemes, including energies, spins, parities, γ-transition branchings and conversion coefficients
- Most of the information contained in the ENSDF library, however:
 - ENSDF format is not appropriate for reaction calculations
 - unique spin and/or parity assignments are often lacking
 - conversion coefficients are missing for most of the electromagnetic transitions
- RIPL levels segment is derived from ENSDF but reaction codes don't use ENSDF

Construction of the RIPL levels segment

- Author: Tamas Belgya
- RIPL-3 database derived directly from ENSDF plus:
 - Determination of unique spins (5 cases, 2 involving statistical approach)
 - Determination of missing ICCs (modified HSICC code)
 - Determination of missing decay probabilities

 Determination of nuclear temperature for constant temperature level densities (Gilbert-Cameron)

- Determination of the cut-off energy up to which the level scheme is complete
- Number of consistency test
- Extensive verification with reaction codes (EMPIRE, TALYS)

QuickTime™ and a TIFF (Uncompressed) decompresson are needed to see this picture.

CSEWG – 2007 BNL, November 6 – 8, 2007

Example of the RIPL level file (¹⁹⁸Au)

Symbol A Z Nl Ng NC Sp Nk Sn 79 136 876 104 1 6.512340 198Au 198 6.448910 Level E Jπ T1/2 Nd possible spins decay mode 1 0.000000 2.0 -1 2.33E+05 0u 2-1 = 100.0000 %B-2 0.055180 1.0 -1 1 u 1- 0 NĒ Eg Pq Pe ГСC 0.055 7.407E-02 1.000E+00/1.250E+01 1 2 u 0-0 3 0.091004 0.0 -1 0.036 2.581E-02 7.381E-01 2.760E+01 2 0.091 2.949E-02 2.619E-01 7.880E+00 1 0.192943 1.0 -1 7.00E-10 3 u 1 - 00.102 1.048E-01 8.535E-01 7.140E+00 3 0.138 1.961E-02 7.882E-02 3.020E+00 2 0.193 4.739E-02 6.772E-02 4.290E-01 1 0.214971 4.0 -1 4.00E-10 1u 4- 0 5 0.215 7.710E-01 1.000E+00 2.970E-01 1 0.236044 3.0 -1 1.50E-10 2 u 3 - 06 2 0.181 9.132E-02 1.405E-01 5.390E-01 0.236 5.968E-01 8.595E-01 4.400E-01 1 7 0.247572 1.0 -1 4.00E-10 3 u 1 - 03 0.157 5.098E-03 1.580E-02 2.100E+00 0.192 2.211E-01 4.798E-01 1.170E+00 2 0.248 3.186E-01 5.044E-01 5.830E-01 1

From discrete levels to level density

Excitation energy

... excellent fit

NNDC

BROOKHAVEN NATIONAL LABORATORY

Case of ¹²⁸I

Bad fit: ⁹⁵Rh - 16 levels

Fixed fit: ⁹⁵Rh - 7 levels

BNL, November 6 - 8, 2007

Effect on the cross sections

Spin effect

BNL, November 6 – 8, 2007

Spin effect

Chadwick, Frankle, Trellue, Talou, Kawano, Young, MacFarlane, Wilkerson, to be published in NDS, Dec. 2007

Conclusions

What counts most:

- Completeness of the level scheme
- Collective bands and their deformations (for deformed nuclei)
- Masses => Q-values (well known inside the stability valley)
- What counts less (for total cross sections):
 - Level spins, parities and branching ratios
 - ICCs irrelevant to cross sections; affect γ-spectra only
 - Ground state deformations
- What counts for isomeric cross sections:
 - Branching ratios (decay scheme)
 - Level spins and parities
 - Ground state deformations (spin distribution)

