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NIF has 3 Missions

National Ignition Facility

Peer-reviewed Basic Science is a fundamental part of NIF’s plan

Stockpile 
Stewardship

Basic 
Science

Fusion 
Energy
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Our vision: open NIF to the outside 
scientific community to pursue frontier 
HED laboratory science

Element formation in stars

The Big Bang
Planetary system formation

Forming Earth-like planets

Chemistry of life

[http://www.nas.edu/bpa/reports/cpu/index.html
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We have already fielded ~ half of all the types of 
diagnostic systems needed for NIF science
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We have 30 types of diagnostic 
systems planned for NIC
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… And Workshops

• With more to come—on:
— Condensed matter
— Nuclear physics
— Getting up to speed for using NIF
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NIF’s Unprecedented Scientific Environments:

• T >108 K matter temperature 
• ρ >103 g/cc density

Those are both 7x what the Sun does! Helium burning, stage 2 in 
stellar evolution, occurs at 2x108 K! 

• ρn = 1026 neutrons/cc

Core-collapse Supernovae, colliding 
neutron stars, operate at ~1020!

• Electron Degenerate conditions 
Rayleigh-Taylor instabilities for 
(continued) laboratory study.

These apply to Type Ia Supernovae!

• Pressure > 1011 bar

Only need ~Mbar in shocked hydrogen 
to study the EOS in Jupiter & Saturn

These certainly qualify as “unprecedented.” And Extreme!
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The NRC committee on the Physics of the Universe 
highlighted the new frontier of HED Science

• HEDP provides crucial experiments to interpret astrophysical observations
• The field should be better coordinated across Federal agencies

Eleven science questions for the new century:

2. What is the nature of dark energy?
— Type 1A SNe (burn, hydro, rad flow, EOS, opacities)

6. How do cosmic accelerators work and 
what are they accelerating?

— Cosmic rays (strong field physics, nonlinear 
plasma waves)

4. Did Einstein have the last word on gravity?
— Accreting black holes (photoionized 

plasmas, spectroscopy)

8. Are there new states of matter at exceedingly 
high density and temperature?
— Neutron star interior (photoionized plasmas, 

spectroscopy, EOS)

10. How were the elements from iron to 
uranium made and ejected?

— Core-collapse SNe (reactions off excited states, 
turbulent hydro, rad flow)

NATIONAL RESEARCH COUNCIL
OF THE NATIONAL ACADEMIES
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Three university teams are starting to prepare 
for NIF shots in unique regimes of HED physics

Planetary
physics - EOS

Paul Drake, PI, U. of Mich.
David Arnett, U. of Arizona, 
Adam Frank, U. of Rochester,
Tomek Plewa, U. of Chicago,
Todd Ditmire, U. Texas-Austin
LLNL hydrodynamics team

Raymond Jeanloz, PI, 
UC Berkeley

Thomas Duffy, Princeton U.
Russell Hemley, Carnegie Inst.
Yogendra Gupta, Wash. State U.
Paul Loubeyre, U. Pierre & Marie 

Curie, and CEA
LLNL EOS team

Christoph Niemann, PI,
UCLA NIF Professor

Chan Joshi, UCLA
Warren Mori, UCLA
Bedros Afeyan, Polymath
David Montgomery, LANL
Andrew Schmitt, NRL
LLNL LPI team

Astrophysics - 
hydrodynamics

Nonlinear optical 
physics - LPI
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Reaction Studies for Nuclear Astrophysics
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• Thermonuclear Reaction Rates between charged particles are of the form:

Rate ~ <σ v> = (8/πμ)1/2 (kB T)-3/2 ∫0
∞ E σ(E) exp[-E/kB T] dE.

Define σ(E) = [S(E)/E] exp[- bE-1/2], 

where penetrability = exp[- 2 π z1 Z1 e2/ћ v] = exp[- bE-1/2] 

• S factors are extrapolated to the relevant stellar energies, in the Gamow 
window, from higher energy experimental data

• Screening
• Laboratory experiments, atomic electron screening effects are significant
• Stellar electron screening effects are also significant, but quite different
• NIF screening is due to degenerate electrons; that’s different still

Stellar Astrophysics at NIF: Measurements of Basic 
Thermonuclear Reactions
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Comparison of 3He(4He,γ)7Be measured at 
an accelerator lab and using NIF

NIF-Based Experiments
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Accelerator-Based Experiments

Mono-energetic
Low event rate (few events/month)
Difficult at relevant energies

High Count rate (4x104 atoms/shot)
Integral experiment
Energy window is better
7Be background
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Issues: Detecting 7Be? Screening?
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Some CNO Cycle Reactions—

12C
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Resonances (CN States!) do matter—

Ratio of the individual contributions to the reaction rate to the total 
reaction rate as a function of temperature [C. Fox et al., Phys. Rev. C 
71 (2005) 055801]. 

17O(p,γ)18F
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Where we stand with 17O(p,γ)18F

Extrapolation of higher energy data and theoretical estimates of the 
direct capture S-factor of the reaction 17O(p,γ)18F [A. Chafa et al., 
Phys. Rev. C 75 (2007) 035810]. (EGAMOW = 53 keV at T = 50x106 K.)

This reaction definitely needs more work! 
CN States might be detectable with NIF.
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The rp-Process

• Occurs in accretion onto 
a white dwarf or neutron 
star

• Involves very rapid burn- 
ing (t ~ few s) via proton 
and α-particle induced 
reactions

• Preexisting nuclides are 
driven to the proton-rich 
side of stability

• Waiting point nuclides—can’t capture another proton, so must wait for 
β-decay

• 26Si, 30S, 34Ar (all 2 neutrons shy of stability) all have half-lives ~ 1 s

• (α,p) reactions on these nuclei (making 29P, 33Cl, and 37K) can circumvent 
the waiting points if the temperature is high enough: ~109 K
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Nuclear Astrophysics with Ignition Shots

rp-Process                   
T = 8.96x108 K              
ρ = 2.07x105 g/cm3 

H no. fraction = 0.327  
He no. fraction = 0.326 
at 8.0 s before the  
luminosity peak. 

The (α,p) reaction 
reactions (on the 
proton-rich side) are 
crucial in promoting 
the burning past the 
26Si, 30S, or 34Ar 
waiting points.

From Fisker, Schatz 
and Thielemann
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How to study 26Si(α,p)29P?

• Need ignition target (2H+3H→4He+n) loaded with 28Si: 
28Si(n,2n)27Si(n,2n)26Si

• Include some 4He, so then 26Si(α,n)29P

• But the “ignition target” also makes 4He, and these are high energy, so 
will interact with large cross sections with the 26Si

• Design a buffer so the 4He from ignition doesn’t get to the region with 
the 28Si (and more 4He)

• That region will have thermal 4He 
interacting with the 28Si!

Be ablator
28Si+4He+H
α stopper
2H+3H
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How to detect the reaction products from NIF?

Detector

Sec
Cryo
Collector (4K)

2. Prim
Cryo (4K)
Collector

Hot He Gas

Hot He Gas

1. Prim
Cryo (30K)
Collector

RGA

Shielding

Outer
Concrete Wall

T-Chamber

UHV
Pump
Line

Detector (4 Ge det.)
(event mode)

Dedicated Radchem Gas Collection System at NIF

Turbo
Pump

Main Cryo-Pump
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A unique NIF opportunity: Study of 
a Three-Body Reaction in the r-Process
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• Currently believed to take place in 
supernovae, but we don’t know for sure

• r-process abundances depend on: 
Nuclear Masses far from stability

— Weak decay rates far from stability

• The cross section for the α+α+n→9Be 
reaction
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α

α
8Be

During its 10-16 s half- 
life, a 8Be can capture 
a neutron to make 
9Be, in the r-process 
environment, and 
even in the NIF target

n

9Be

• If this reaction is strong, 9Be becomes abundant, α+9Be→ 12C+n is 
frequent, and the light nuclei will all have all been captured into the 
seeds by the time the r-Process seeds get to ~Fe

• If it’s weak, less 12C is made, and the seeds go up to mass 100 u or 
so; this seems to be what a successful r-Process (at the neutron star 
site) requires

• The NIF target would be a mixture of 2H and 3H, to make the neutrons 
(not at the right energy—but it might be modified), with some 4He 
(and more 4He will be made during ignition). This type of experiment 
can’t be done with any other facility that has ever existed

α+α+n→9Be is the “Gatekeeper” for the r-Process
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Core-collapse supernova explosion 
mechanisms remain uncertain

6 x 109cm

• SN observations suggest rapid core penetration to the “surface”
• This observed turbulent core inversion is not yet fully understood

Standard (spherical shock) model

[Kifonidis et al., AA. 408, 621 (2003)]

Densityt = 1800 sec

Jet model

[Khokhlov et al., Ap.J.Lett. 524, 
L107 (1999)]

• Pre-supernova structure is multilayered
• Supernova explodes by a strong shock
• Turbulent hydrodynamic mixing results
• Core ejection depends on this turbulent hydro.
• Accurate 3D modeling is required, but difficult
• Scaled 3D testbed experiments are possible

1012cm

9 
x 

10
9 c

m
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Core-collapse supernova explosion 
mechanisms remain uncertain

• A new model of Supernova explosions: 
from Adam Burrows et al.

• A cutaway view shows the inner regions 
of a star 25 times more massive than the 
sun during the last split second before 
exploding as a SN, as visualized in a 
computer simulation. Purple represents 
the star’s inner core; Green (Brown) 
represents high (low) heat content

From http://www.msnbc.msn.com/id/11463498/

• In the Burrows model, after about half a 
second, the collapsing inner core begins 
to vibrate in “g-mode” oscillations. These 
grow, and after about 700 ms, create 
sound waves with  frequencies of  200 
to 400 hertz. This acoustic power couples 
to the outer regions of the star with high 
efficiency, causing the SN to explode

• Burrows’ solution hasn’t been accepted by everyone; it’s very different from
any previously proposed. But others (Blondin/Mezzacappa) are also looking at 
instabilities as the source of the explosion mechanism
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NIF will be able to create and characterize a wide range of 
high - (P, ρ) states of  matter found in the interiors of planets

Fundamental questions in planetary formation 
models can be addressed on NIF



NIF-0907-13978.ppt R. Boyd 04/18/07 29

A Hydrogen-Helium Phase Transition 
At High Pressure?

What would be the effect of a phase transition at high 
pressure (and low temperature) in which He and H can’t 
mix?

The separation might create an object with a core of helium 
surrounded by a shell of hydrogen

This would certainly look different from conventional 
planetary models; might that produce the anomalous     
effects observed in giant planets?

If so, it would depend critically on                            
the mass of the object; Saturn                                  
is about right, Jupiter is too                                  
massive.

He core

H shell
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• HEDP provides crucial experiments to interpreting astrophysical observations
• We envision that NIF will play a key role in these measurements

Eleven science questions for the new century:

2. What is the nature of dark energy?
— Type 1A SNe (burn, hydro, rad flow, EOS, opacities)

6. How do cosmic accelerators work and 
what are they accelerating?

— Cosmic rays (strong field physics, nonlinear 
plasma waves)

4. Did Einstein have the last word on gravity?
— Accreting black holes (photoionized 

plasmas, spectroscopy)

8. Are there new states of matter at exceedingly 
high density and temperature?
— Neutron star interior (photoionized plasmas, 

spectroscopy, EOS)

10. How were the elements from iron to 
uranium made and ejected?

— Core-collapse SNe (reactions off excited states, 
turbulent hydro, rad flow)

NATIONAL RESEARCH COUNCIL
OF THE NATIONAL ACADEMIES

The NRC committee on the Physics of the Universe 
highlighted the new frontier of HED Science
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Data Needs for Nuclear Astrophysics

• Thermonuclear reaction rates (not cross sections, usually!)
— Tabulations exist for these
— But many reaction rates needed for reactions on short-lived 

nuclei, especially proton-rich nuclei

• Masses of proton- and neutron-rich nuclei
— Where are the neutron shell closures for neutron-rich nuclei?
— Masses becoming available for many short-lived nuclei, but not 

for A~195 nuclei ~20 neutrons beyond stability

• Lifetimes of proton- and neutron-rich nuclei
— Many lifetimes becoming available, but not for the A~195 u nuclei 

~20 neutrons beyond stability

• Decay modes of nuclei far from stability
— β, β-n, β-2n, …
— β, β-p, β-2p, …
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