LLNL Laboratory Report

David Brown

S & T - PhySci/N Division

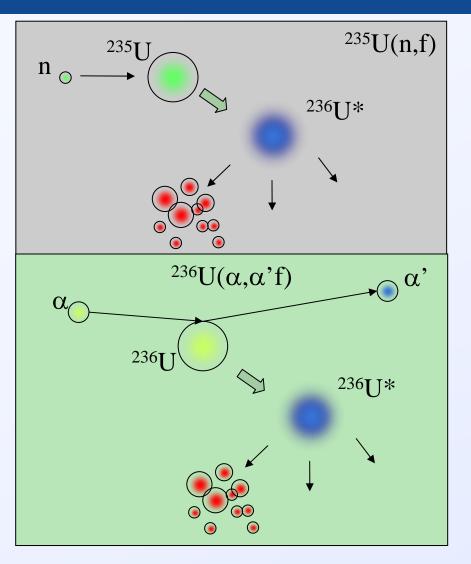
Lawrence Livermore National Laboratory

Computational Nuclear Physics Overview

- Main conduit for communication and coordination between LLNL Programs and N Division:
 - Coordinate nuclear data related experiment and theory activities in N Division
 - Manage LLNL nuclear data infrastructure
 - Website
 - Processing codes
 - Data access libraries
 - Neutron and photon transport routines
 - Manage LLNL nuclear data libraries
 - Perform evaluations in support of LLNL program
 - Collect & disseminate other LLNL evaluations
 - Provide non-LLNL nuclear data libraries to LLNL customers
- Chair Homeland Security Nuclear Data Taskforce

Personnel updates

- New hires in CNP Group reflect LLNL and USNDP data needs:
 - Neil Summers (Flex Term)
 - Low energy reaction theory
 - Nuclear data evaluations
 - Evaluator tool development
 - Ramona Vogt (Flex Term/Adjunct UC Davis)
 - Fission product modeling
- Collaborations
 - Ian Thompson & Petr Navratil (N Division/NTM Group)
 - Marie-Anne Descalle (AP Division)
 - Brad Sleaford (Engineering)
- Strong support fro ASC and DHS programs:
 - 0.42 FTE from USNDP (0.5 FTE in FY05 \$\$, last time we had increase)
 - 8.5 FTE from ASC & NHI/DNDO



N Division Highlights

- Computational Nuclear Physics
- Nuclear Theory and Modeling
- Nuclear Experiments and Technology
- High Energy Physics
- Collaborations within the laboratory
 - AP Division
 - Engineering
- And outside the laboratory
 - LBNL, LANL, INL, TUNL
 - Stockpile Stewardship Academic Alliance partners: Yale, Univ. of Richmond, Rutgers, UC Berkeley
 - many others...

LLNL continues to lead experimental and theoretical development of the surrogate reaction technique

Hauser-Feshbach (HF) for "desired" CN reaction

$$\sigma_{\alpha\chi} = \Sigma_{\text{J},\pi} \: \sigma_{\alpha}^{\:\:\text{CN}} \: (\text{E},\text{J},\pi) \cdot G^{\text{CN}}_{\:\:\:\chi} (\text{E},\text{J},\pi)$$

Weisskopf-Ewing limit of reaction:

$$\sigma_{\alpha\chi}^{\text{WE}}(E) = \underline{\sigma_{\alpha}^{\text{CN}}(E)} \cdot \underbrace{P_{\chi}(E)}_{\text{calculated}} = \underbrace{N_{coinc}/N_{single}}_{\text{measured}}$$

J. Burke et al. Phys. Rev. C 73, 054604 (2006)

 237 U(n,f) simulated by 238 U(α , α 'f)

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

S & T - PhySci/N Division

The surrogate technique has met with some early success, but there are difficult questions yet to settle

J. Escher, F.S. Dietrich Phys. Rev. C 74, 054601 (2006)

B.F. Lyles et al. Phys. Rev. C 76, 014606 (2007)

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture. QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

 236 U(n,f) simulated by 238 U(3 He, α f)

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Angular-momentum mismatch between Surrogate and desired reactions affects low-energy regime.

Computational Nuclear Physics is producing many new and revised evaluations for the next ENDF release

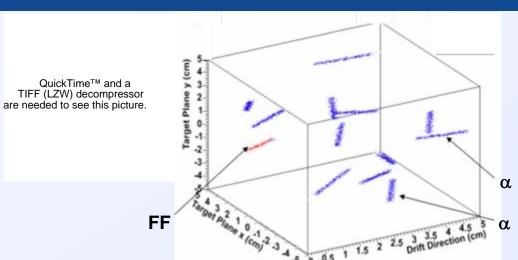
- ²⁴⁰Am based on surrogate work of Younes & Britt (D. Brown, N. Summers)
- ²³⁷U based on LLNL surrogate work (D. Brown, N. Summers, I. Thompson (NTM), W. Younes (NTM))
- B. Sleaford (Eng.) merged EGAF data with ENDF/B-VII.0 evaluations as part of his Ph.D. in Nuclear Engineering: ¹⁹F, ¹⁸²W, ¹⁸³W, ¹⁸⁴W, ¹⁸⁶W, and ²⁰⁷Pb
- Evaluations in progress:
 - Structural materials (N. Summers, I. Thompson (NTM)):
 - Fill out Mn network (54, 56, and 57)
 - Fill out Cu network (62, 64, and 66)
 - Making all 497 partial evaluations in the Hoffman Radchem library (now in ENDF/A) transport ready (N. Summers)

Humble beginning of what we hope to become a focus for Homeland Security simulation tools (D. Wright (HEP))

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.

http://nuclear.llnl.gov/simulation/

S & T - PhySci/N Division


Development of a Time Projection Chamber for precision ²³⁹Pu(n,f) cross section measurement (M. Heffner (HEP))

TPC Capabilities:

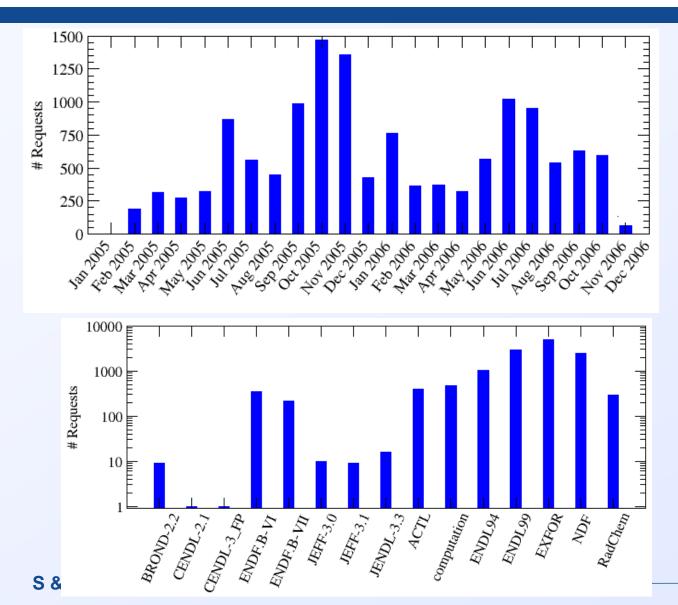
- 3D event reconstruction
- High background rejection
- Particle identification
- Standalone or incorporate in existing detector

Possible Measurements:

- Precision ²³⁹Pu(n,f) other (n,f) cross-sections (e.g. ²³⁵U, ²³⁸U)
- Fission fragment energy, mass and direction
- Neutron energy, direction, number (with specially designed TPC)
- Correlation with γ-rays (with γ external spectrometer)

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

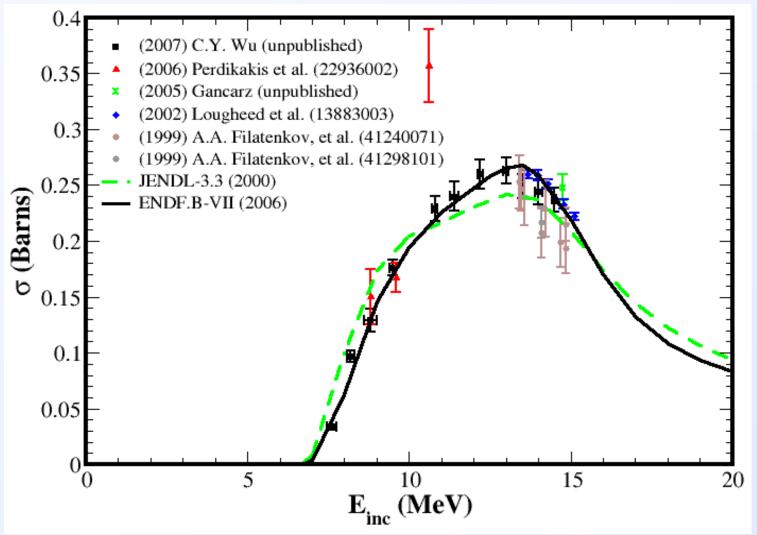
QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.



S & T - PhySci/N Division

Backup Slides

LLNL's Nuclear and Atomic Data System remains popular


P. Navratil (NTM) reviewed the gamma production data for several low-Z isotopes

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

 Part of D. Brown, M. Johnson, P. Navratil, "High Energy Neutron Induced Gamma Production" UCRL-TR-235226

²⁴¹Am(n,2n) measurement at TUNL in excellent agreement with ENDF/B-VII.0 evaluation (C.-Y. Wu (NET))

