Coulomb excitation 1976Sv02

	History					
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	E. Browne, J. K. Tuli	NDS 145,25 (2017)	1-Jul-2017			

 $(\alpha, \alpha' \gamma)$, E=10 MeV. Natural target. Ge(Li), FWHM=2.2 keV at 1332 keV. Measured E γ , I γ , $\gamma\gamma$, a, $\gamma(\theta)$, and excitation yields. (¹⁶O,¹⁶O' γ), E=28 MeV to 42 MeV. Measured Doppler shift attenuation.

 $(p,p'\gamma)$ E=1.8 MeV (1963Al14). Other: 1972Bo06.

99Tc Levels

B(E2) from excitation yield if B(E2)(181.1 level)=0.0245 9 as deduced from $T_{1/2}(181.1)=3.61$ ns 7 (corrected by the evaluators for the adopted γ branching).

E(level)	J^{π}	$T_{1/2}$ ‡	Comments
0	9/2+		
140.52 7	7/2+		B(E2)↑=0.10 2
			Other: 0.035 (1963Al14).
181.04 9	$5/2^{+}$		B(E2)↑=0.021 (1963A114)
			B(E2)=0.0245 9 from adopted $T_{1/2}$, branching.
625.40 9	$(9/2)^+$		B(E2)↑=0.0010 3
726.67 8	$11/2^{+}$	1.8 ps 2	B(E2) ⁺ 0.076 11
761.68 10	$5/2^{+}$	0.7 ps +5-3	B(E2)↑=0.018 3
762.03 9	$(13/2^+)$	2.4 ps 3	B(E2)↑=0.133 <i>19</i>
1081.35 8	$(11/2^+)$	0.9 ps 3	B(E2)↑=0.024 4

[†] From Adopted Levels.

[‡] From Doppler shift attenuation (1976Sv02). The 1972Bo06 measurement gives systematically smaller values which may be due to an error in the stopping power function for the pressed-powder target. 1976Sv02 used a rolled-metal target.

					-	Coulomb exc	citation 19768	v02 (continue	ed)
$\gamma^{(99}\text{Tc})$									
Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	$\delta^{\ddagger b}$	α ^{<i>a</i>}	Comments
40.6 101.3 [#] 2 140.5 <i>I</i>	556 40	181.04 726.67 140.52	5/2 ⁺ 11/2 ⁺ 7/2 ⁺	140.52 625.40 0	7/2 ⁺ (9/2) ⁺ 9/2 ⁺	(M1+E2)	+0.20 +8-6	0.119 9	$\alpha(K)=0.104 \ 8; \ \alpha(L)=0.0129 \ 14; \ \alpha(M)=0.0023 \ 3$
181.1 <i>1</i>	72 7	181.04	5/2+	0	9/2+	(E2)		0.1479	$\alpha(N)=0.000374; \alpha(O)=2.30\times10^{-5}13$ $\alpha(K)=0.125218; \alpha(L)=0.01883; \alpha(M)=0.003435$ $\alpha(N)=0.0005238; \alpha(O)=2.44\times10^{-5}4$
319.2 2 484.9 2	≤ 0.6 ≤ 0.4	$1081.35 \\ 625.40$	(11/2 ⁺) (9/2) ⁺	762.03 140.52	(13/2 ⁺) 7/2 ⁺				
580.7 1	3.5 3	761.68	5/2+	181.04	5/2+	(M1+E2)	-0.15 20	0.00299	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00262 \ 5; \ \alpha(\mathbf{L}) = 0.000299 \ 6; \ \alpha(\mathbf{M}) = 5.42 \times 10^{-5} \\ &11 \\ &\alpha(\mathbf{N}) = 8.64 \times 10^{-6} \ 16; \ \alpha(\mathbf{O}) = 5.84 \times 10^{-7} \ 9 \\ &\mathbf{B}(\mathbf{M}1)(\mathbf{W}.\mathbf{u}.) = 0.019 \ +9 - 14; \ \mathbf{B}(\mathbf{E}2)(\mathbf{W}.\mathbf{u}.) = 1 \ +4 - 1 \\ &\delta: \ \text{or} \ \delta = +2.5 \ 20. \end{aligned}$
580.9 <mark>&</mark> c	<1	762.03	$(13/2^+)$	181.04	5/2+				
586.1 <i>1</i>	15.6 8	726.67	11/2+	140.52	7/2+	(E2)		0.00319	$\alpha(K)=0.00279 \ 4; \ \alpha(L)=0.000333 \ 5; \ \alpha(M)=6.04\times10^{-5}$
									$\alpha(N)=9.52\times10^{-6}$ 14; $\alpha(O)=5.99\times10^{-7}$ 9 B(E2)(W.u.)=23 3
621.1 <i>1</i>	21.3 10	761.68	5/2+	140.52	7/2+	(M1+E2)	+0.19 6	0.00256	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00225 \ 4; \ \alpha(\mathbf{L}) = 0.000256 \ 4; \ \alpha(\mathbf{M}) = 4.63 \times 10^{-5} \\ &7 \\ &\alpha(\mathbf{N}) = 7.38 \times 10^{-6} \ 11; \ \alpha(\mathbf{O}) = 4.99 \times 10^{-7} \ 7 \\ &\mathbf{B}(\mathbf{M}1)(\mathbf{W}.\mathbf{u}.) = 0.09 \ + 4 - 7; \ \mathbf{B}(\mathbf{E}2)(\mathbf{W}.\mathbf{u}.) = 8 \ + 7 - 8 \\ &\delta: \ \text{or} \ \delta > + 13. \end{aligned}$
621.5 <mark>&c</mark>	<4	762.03	$(13/2^+)$	140.52	$7/2^{+}$				
625.4 1	1.6 2	625.40	(9/2)+	0	9/2+	(M1+E2)	<-1	0.00255 6	$\alpha(K)=0.00224$ 5; $\alpha(L)=0.000257$ 8; $\alpha(M)=4.66\times10^{-5}$
726.7 1	100 5	726.67	11/2+	0	9/2+	(M1+E2)		0.00179 <i>3</i>	$\alpha(N)=7.41\times10^{-6}\ 20;\ \alpha(O)=4.93\times10^{-7}\ 8$ $\alpha(K)=0.001567\ 23;\ \alpha(L)=0.000180\ 5;$ $\alpha(M)=3.27\times10^{-5}\ 8$ $\alpha(N)=5.19\times10^{-6}\ 11;\ \alpha(O)=3.43\times10^{-7}\ 7$ $\delta_{1}>0$
$(761.7^{@})$	3.9 [@]	761.68	$5/2^{+}$	0	$9/2^{+}$				0. 20.
762.0 1	179 5	762.03	(13/2 ⁺)	0	9/2+	(E2)		1.59×10 ⁻³	$\alpha(K)=0.001391 \ 20; \ \alpha(L)=0.0001623 \ 23; \alpha(M)=2.94\times10^{-5} \ 5 \alpha(N)=4.65\times10^{-6} \ 7; \ \alpha(O)=3.01\times10^{-7} \ 5 B(E2)(Wu)=33 \ 5$
940.9 1	4.8 3	1081.35	$(11/2^+)$	140.52	7/2+	(E2)		9.52×10 ⁻⁴	$\alpha(\text{K})=0.000835 \ 12; \ \alpha(\text{L})=9.60\times10^{-5} \ 14; \ \alpha(\text{M})=1.737\times10^{-5} \ 25$

ы

From ENSDF

L

	Coulomb excitation 1976Sv02 (continued)						
γ ⁽⁹⁹ Tc) (continued)							
E_{γ}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [‡]	α^{a}	Comments
1081.3 <i>1</i>	8.9 6	1081.35	(11/2+)	0 9/2+	(M1+E2)	0.00072 3	$\begin{split} &\alpha(\mathrm{K}){=}0.000835 \ 12; \ \alpha(\mathrm{L}){=}9.60{\times}10^{-5} \ 14; \ \alpha(\mathrm{M}){=}1.737{\times}10^{-5} \ 25 \\ &\alpha(\mathrm{N}){=}2.76{\times}10^{-6} \ 4; \ \alpha(\mathrm{O}){=}1.82{\times}10^{-7} \ 3 \\ &\mathrm{B}(\mathrm{E2})(\mathrm{W.u.}){=}11 \ 4 \\ &\alpha(\mathrm{K}){=}0.000630 \ 23; \ \alpha(\mathrm{L}){=}7.13{\times}10^{-5} \ 21; \ \alpha(\mathrm{M}){=}1.29{\times}10^{-5} \ 4 \\ &\alpha(\mathrm{N}){=}2.05{\times}10^{-6} \ 7; \ \alpha(\mathrm{O}){=}1.38{\times}10^{-7} \ 6 \\ &\delta: >0. \end{split}$
 [†] Relative [‡] From α₂ [#] Observe [@] Not seer ^{&} Placeme ^a Addition ^b If no val ^c Placeme 	intensiti $\gamma(\theta)$. d only in n in Coul nt not ac nal informulae given nt of trai	es at $E\alpha = 10^{\circ}$ n coincidence lomb excitate lopted. nation 1. i it was assumation in th	0 MeV, θ = we a measur- tion. Iy decomposition. Iy decomposition $\delta = 1.0$ unde $\delta = 1.0$	54°. rement. duced from a 00 for E2/M neme is unce	relative branc 1, δ =1.00 for rtain.	thing observed • E3/M2 and d	d in ⁹⁹ Mo β^- decay. δ =0.10 for the other multipolarities.

⁹⁹₄₃Tc₅₆-3

⁹⁹₄₃Tc₅₆