⁹⁸Mo(³He,pnγ) **1998Cr01**

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	E. Browne, J. K. Tuli	NDS 145, 25 (2017)	1-Jul-2017				

E=13.5, 15, 16.5 and 18 MeV. Measured E γ , I γ , $\gamma\gamma$, excitation functions, $\gamma(\theta)$, and $\gamma\gamma(\theta)$ (DCO) using two Ge detectors. 1947.3 level shown in figure 4 of 1998Cr01 decaying by 475.9 gamma does not exist. Additional information 1.

997	Γс	Le	vel	s

E(level) [†]	$J^{\pi \ddagger}$	Comments
0.0#	9/2+	
140.641 ^{#} 23	7/2+	
142.69 [@] 4	1/2-	
181.207 [#] 25	5/2+	
$509.03^{\textcircled{0}}4$	3/2-	
$612.40^{@}$ 4	5/2-	
625.60 4	$(9/2)^+$	
671.53 ^{&} 4	3/2-	
719.51 5	7/2+	
726.80 [#] 4	$11/2^+$	
739.30 3	$(7/2^+)$	
761.90 4	5/2+	
761.99" 4	$13/2^+$	
884.51^{-4}	(3/2)	
920.01° 3	$1/2^{+}$	
986.25 4	(1/2) $2/2^{(-)}$	π_{i} assignment to $\pi_{1/2}[1/2,1]$ hand not correct if π_{-}
1004.190	$(5/2^+, 7/2^+)$	J : assignment to $\pi 1/2[451]$ band not correct if $\pi = -$.
1019.88 4	(3/2, 7/2) $(11/2^+)$	
1127.33 21	(11/2)	
1129.13 6	$(3/2)^{-}$	
1135.05 ^{&} 4	$(5/2^{-})$	
1141.85 5	3/2+	
1149.57 4	(9/2+)	
1176.53 5	$9/2^{-}$	
1198.04 /	(3/2) $(9/2^+)$	
1207.31^{a} 4	$(7/2^{-})$	
1243.89 ^b 5	$(7/2^+)$	
1306.40 6	$(7/2^+)$	
1309.23 15		
1320.72 5	3/2-	
1329.49 ^{x} 4	$(7/2^{-})$	E(level): 1320.77, $J^{\pi}=3/2^{-}$ in Figure 3 of 1998Cr01 is a misprint.
1405.50 6	(1/2, 3/2) (9/2+7/2+)	
1444.23 6	$(1/2^+, 3/2^+, 5/2)$	
1494.24 12	(-1- ;=1- ;=1-)	
1503.82 5	$(3/2^+, 5/2^+)$	
1507.09 5	$(13/2^+, 15/2^+)$	
1526.51# 5	$(15/2^+)$	
1552.13 15	$(3/2^+)$ $(7/2^+)$	
1332.37 0	(1/2)	

98 Mo(3 He,pn γ) 1998Cr01 (continued)

99Tc Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	Comments
1554.55 21	$1/2^{+}$	
1563.25 6	$(5/2^+, 7/2^+, 9/2^+)$	
1565.19 6	$(5/2^+, 7/2^+, 9/2^+)$	
1566.21 20	$(11/2^+)$	
1581.26 5	$(11/2^+, 13/2^+)$	
1585.04 6	17/2+	
1604.98 [@] 7	$(11/2^{-})$	
1611.41 15	$(1/2^{-}, 3/2^{-}, 5/2^{-})$	E(level): 1604.91, $J^{\pi} = (11/2^{-})$ in Figure 4 of 1998Cr01 is a misprint.
1622.05 21		
1659.13 6	$(3/2^+, 5/2^+, 7/2^+)$	
1678.27 6	$(5/2)^+$	
1747.45 [@] 7	13/2-	
1753.00 21		
1790.40 21		
1808.42 21	$(3/2^+, 5/2^+)$	
1823.75 15	$(3/2^+, 5/2^+)$	
1853.33 21		
1875.00 21		Additional information 2.
1947.33 21	17/2-	
2329.96 21	17/2	Additional information 3.
2.50/.24 21		

[†] Deduced by evaluators from least-squares fit to $E\gamma'$ s. [‡] As proposed in 1998Cr01 based on their $\gamma(\theta)$, $\gamma\gamma(\theta)$ (DCO), and excitation measurements. See also Adopted Levels.

^a Band(A): $\pi 5/2[422]$ Quasi band. ^a Band(B): $\pi 1/2[301]$ band. ^b Band(C): $\pi 3/2[301]$ band. ^b Band(E): $\pi 1/2[431]$ band.

$\gamma(^{99}\text{Tc})$

E_{γ}^{\dagger}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Comments
103.6 2	0.7	612.40	5/2-	509.03	3/2-	
140.77 5	100	140.641	$7/2^+$	0.0	$9/2^+$	$A_2 = +0.02 \ 3.$
142.68 5		142.69	$1/2^{-}$	0.0	9/2+	
162.64 5	4.2	671.53	$3/2^{-}$	509.03	$3/2^{-}$	$A_2 = +0.09 5.$
181.23 5	47.7	181.207	$5/2^{+}$	0.0	9/2+	$A_2 = +0.10 2.$
190.6 2	0.4 [#]	1176.53	9/2-	986.25	$(7/2^{-})$	
212.94 5	4.4	884.31	(5/2 ⁻)	671.53	3/2-	E_{γ} : level-energy difference=212.78. A ₂ =0.00 3.
250.82 ^{&} 5	0.8	1135.05	$(5/2^{-})$	884.31	$(5/2^{-})$	2
266.7 <mark>b</mark> 2	0.9 <mark>b</mark>	986.25	$(7/2^{-})$	719.51	$7/2^{+}$	
271.94 5	5.1	884.31	$(5/2^{-})$	612.40	5/2-	$A_2 = +0.13 \ 3.$
323.00 5	2.1	1207.31	$(7/2^{-})$	884.31	$(5/2^{-})$	$A_2 = +0.23 \ I0.$
366.39 5	33.9	509.03	$3/2^{-}$	142.69	$1/2^{-}$	$A_2 = +0.01 \ 2.$
373.80 5	5.4	986.25	$(7/2^{-})$	612.40	5/2-	$A_2 = -0.17 \ 3.$
375.7 <mark>b</mark> 2	0.4 <mark>b</mark>	884.31	$(5/2^{-})$	509.03	$3/2^{-}$	
379.97 5	1.0	1141.85	3/2+	761.90	5/2+	$A_2 = -0.02 5.$

⁹⁸Mo(³He,pnγ) **1998Cr01** (continued)

$\gamma(^{99}\text{Tc})$ (continued) E_{γ}^{\dagger} E_i(level) J_i^{π} \mathbf{E}_{f} J_f^{π} Comments Iγ 410.3 & 2 0.6[@] 1552.13 $(3/2^+)$ 1141.85 $3/2^{+}$ A₂=+0.10 10. 0.6# 412.7 2 $3/2^{+}$ 1554.55 $1/2^{+}$ 1141.85 437.15^b 5 1.3^b 1176.53 $9/2^{-}$ 739.30 $(7/2^+)$ $A_2 = -0.10$ 6. 0.3 $(9/2)^+$ 181.207 $5/2^{+}$ 444.4 2 625.60 457.59 5 2.3 1129.13 671.53 $3/2^{-}$ $(3/2)^{-}$ $A_2 = +0.09 5.$ 469.70 5 45.1 612.40 $5/2^{-}$ 142.69 $1/2^{-}$ A₂=+0.20 2. 477.1 2 986.25 $(7/2^{-})$ 509.03 $3/2^{-}$ 0.8 140.641 7/2+ 484.98 5 3.0 625.60 $(9/2)^+$ $A_2 = +0.36$ 7. 508.1[&] 2 0.4 1494.24 986.25 $(7/2^{-})$ 522.71 5 4.0 1135.05 $(5/2^{-})$ 612.40 $5/2^{-}$ $A_2 = -0.13 3$. 528.80 5 18.7 671.53 $3/2^{-}$ 142.69 $1/2^{-}$ $A_2 = +0.06 2.$ 535.72[&] 5 1.9 1207.31 $(7/2^{-})$ 671.53 $3/2^{-}$ A₂=+0.19 8. 538.31 5 $7/2^{+}$ 181.207 5/2+ 11.9 719.51 $A_2 = +0.18 2.$ 558.17 5 1.6 739.30 $(7/2^+)$ 181.207 5/2+ $A_2 = -0.10 9$. 564.17 5 10.7 1176.53 $9/2^{-}$ 612.40 $5/2^{-}$ A₂=+0.29 3. $13/2^{-}$ 570.90 5 1747.45 1176.53 9/2-3.9 $A_2 = +0.37$ 5. 0.8 578.9 2 719.51 $7/2^{+}$ 140.641 7/2+ A₂=0.00 11. 1.7[‡] 581.1 2 761.90 $5/2^{+}$ 181.207 5/2+ $A_2 = -0.06 8.$ $581.7^{\&b}$ 2 0.4^b 1207.31 625.60 $(9/2)^+$ $(7/2^{-})$ 0.7 1747.45 582.5 2 2329.96 $17/2^{-}$ $13/2^{-1}$ 2.3 586.23 5 726.80 $11/2^{+}$ 140.641 7/2+ A₂=+0.40 6. 598.68 5 5.0 739.30 140.641 7/2+ A₂=+0.05 4. $(7/2^+)$ 609.8[&] 2 0.6[@] 1494.24 884.31 $(5/2^{-})$ 1.5^{@b} 609.98^b 5 $(7/2^{-})$ $7/2^{+}$ 1329.49 719.51 A₂=+0.13 6. 618.2^b 2 0.4[‡]*b* 1243.89 $(7/2^+)$ 625.60 $(9/2)^+$ 0.7‡ 618.3 2 1127.33 509.03 $3/2^{-}$ 2.1‡ 618.73 5 1604.98 $(11/2^{-})$ 986.25 $(7/2^{-})$ $A_2 = +0.30$ 7. 0.7‡ 620.2[&] 2 1129.13 $(3/2)^{-}$ 509.03 $3/2^{-}$ 140.641 7/2+ 621.18 5 14.5 761.90 $5/2^{+}$ $A_2 = +0.005 2.$ $9/2^{+}$ 625.57 5 15.1‡ 625.60 $(9/2)^+$ 0.0A₂=+0.23 2. 625.87[&] 5 3/2-1.4[‡] 1135.05 $(5/2^{-})$ 509.03 1.1# 631.5 2 1552.13 $(3/2^+)$ 920.61 $1/2^{+}$ $A_2 = -0.15 5.$ 0.9# 676.8 2 1853.33 1176.53 $9/2^{-}$ $(3/2^{-})$ 689.61 5 1.5 1198.64 509.03 $3/2^{-}$ A₂=+0.10 4. $(9/2^+, 7/2^+)$ 699.47 5 1.5 1426.27 726.80 $11/2^{+}$ A₂=+0.09 9. 702.94 5 2.1 884.31 $(5/2^{-})$ 181.207 $5/2^{+}$ E_{γ} : level-energy difference=703.10. $A_2 = +0.14 5.$ 708.30 2 5 1.1 1320.72 $3/2^{-}$ 612.40 $5/2^{-}$ 716.97[&] 5 1329.49 612.40 $5/2^{-}$ 1.4 $(7/2^{-})$ A2=+0.21 10. $9/2^{+}$ 726.71 5 16.4 726.80 $11/2^{+}$ 0.0 $A_2 = +0.46 2.$ 726.9 2 0.5 1611.41 $(1/2^{-}, 3/2^{-}, 5/2^{-})$ 884.31 $(5/2^{-})$ 733.95 5 1.5 1405.50 $(1/2^-, 3/2^-)$ $3/2^{-}$ 671.53 14.8 739.30 $9/2^{+}$ 739.15 5 $(7/2^+)$ 0.0 7.1‡ 739.39 5 920.61 $1/2^{+}$ 181.207 5/2+ 2.2 743.8 2 884.31 $(5/2^{-})$ 140.641 7/2+ $A_2 = -0.06$ 7. 745.10[&] 5 1.3[@] 1507.09 $(13/2^+, 15/2^+)$ 761.99 $13/2^{+}$ A₂=+0.34 17. 761.98^c 5 3.2^C $5/2^{+}$ 761.90 0.0 $9/2^{+}$ $13/2^{+}$ 761.98^c 5 $9/2^{+}$ 19.8^C 761.99 0.0 A₂=+0.31 2. 764.48 5 3.2 1526.51 $(15/2^+)$ 761.99 $13/2^{+}$ A₂=+0.32 10.

Continued on next page (footnotes at end of table)

⁹⁸Mo(³He,pnγ) **1998Cr01** (continued)

γ ⁽⁹⁹Tc) (continued)

E_{γ}^{\dagger}	Iγ	E _i (level)	J_i^π	E_f	\mathbf{J}_f^{π}	Comments
764.55 5	1.5‡	1503.82	$(3/2^+, 5/2^+)$	739.30	$(7/2^+)$	$A_2 = +0.05 \ 9.$
770.8 2	0.5 [#]	1947.33		1176.53	9/2-	
777.92 5	3.3	920.61	$1/2^{+}$	142.69	$1/2^{-}$	
780.28 5	1.5 [#]	1507.09	$(13/2^+, 15/2^+)$	726.80	$11/2^{+}$	$A_2 = +0.29 \ 14.$
782.2 2	0.8^{\ddagger}	2367.24		1585.04	$17/2^{+}$	
799.74 ^{&} 5	1.6	1526.51	$(15/2^+)$	726.80	$11/2^+$	$A_2 = +0.32 \ 10.$
805.12 5	2.2	986.25	$(7/2^{-})$	181.207	5/2+	$A_2 = -0.185$.
811.70 5	1.6	1320.72	3/2-	509.03	3/2-	$A_2 = +0.14 6.$
819.28 5	1.0"	1581.26	$(11/2^+, 13/2^+)$	761.99	13/2+	$A_2 = -0.27/13.$
822.98 5	11.3+	1004.19	3/2(-)	181.207	5/2+	$A_2 = -0.03 \ 3.$
823.04 5	3.7+	1585.04	17/2+	761.99	$13/2^{+}$	$A_2 = +0.31 5.$
832.2° 2	0.5#	1444.23	$(1/2^+, 3/2^+, 5/2)$	612.40	5/2-	
838.65 ^{&} 5	5.1	1019.88	$(5/2^+, 7/2^+)$	181.207	5/2+	$A_2 = +0.10 \ 4.$
845.6 2	1.0+	986.25	$(7/2^{-})$	140.641	$7/2^{+}$	
854.0 [∞] 2	0.3	1581.26	$(11/2^+, 13/2^+)$	726.80	$\frac{11}{2^+}$	
879.26 5	7.6	1019.88	$(5/2^+, 7/2^+)$	140.641	7/2*	$A_2 = +0.04 \ 4.$
896.6 2	0.6	1405.50	$(1/2^-, 3/2^-)$	509.03	3/2-	
935.2 [°] 2	0.6"	1444.23	$(1/2^+, 3/2^+, 5/2)$	509.03	3/2-	
939.4 [°] 2	0.5^{+}	1678.27	$(5/2)^+$	739.30	$(7/2^+)$	
940.65 [°] 5	2.9	1081.32	$(11/2^+)$	140.641	7/2+	$A_2 = +0.22 \ 4.$
953.9 ^{x} 2	1.0#	1135.05	$(5/2^{-})$	181.207	$5/2^+$	$A_2 = +0.21 \ 15.$
955.67 5	1.4 8.4	1581.26	$(11/2^+, 13/2^+)$ $3/2^+$	625.60	(9/2) ⁺ 5/2 ⁺	$A_2 = +0.42$ 22. $A_2 = +0.05$ 6
968.31 5	3.3	1149.57	$(9/2^+)$	181.207	$5/2^+$	$A_2 = +0.05$ 0. $A_2 = +0.26$ 5.
985.9 ^{b&} 2	0.6 ^{#b}	1747.45	13/2-	761.99	$13/2^{+}$	2
999.2 2	0.8	1611.41	$(1/2^-, 3/2^-, 5/2^-)$	612.40	5/2-	$A_2 = +0.10 \ 18.$
1008.98 ^{&} 5	3.0 [#]	1149.57	$(9/2^+)$	140.641	7/2+	$A_2 = -0.29 \ 4.$
1026.14 ^{&b} 5	1.4 <mark>b</mark>	1207.31	$(7/2^{-})$	181.207	$5/2^{+}$	$A_2 = -0.10$ 7.
1061.9 ^{&} 2	0.8^{\ddagger}	1823.75	$(3/2^+, 5/2^+)$	761.90	$5/2^{+}$	
1062.5 ^{&} 2	3.7 [‡]	1203.47	$(9/2^+)$	140.641	$7/2^{+}$	$A_2 = -0.01 5.$
1062.72 5	3.0 [‡]	1243.89	$(7/2^+)$	181.207	$5/2^{+}$	$A_2 = -0.14 \ 2.$
1081.33 5	5.0	1081.32	$(11/2^+)$	0.0	9/2+	$A_2 = -0.41 5.$
1084.4 2	0.9	1823.75	$(3/2^+, 5/2^+)$	739.30	$(7/2^+)$	
1103.1 2	0.6#	1243.89	$(7/2^+)$	140.641	$7/2^+$	
1113.1 2	0.8	18/5.00	$(7/2^{+})$	/61.90	5/2 ' 5/2+	Additional information 4
1123.20 3	3.2	1300.40	(1/2)	101.207	5/2	Additional information 4. $A_2 = -0.14 8.$
1127.4 2	0.8‡	1753.00		625.60	$(9/2)^+$	2
1128.4 2	0.9 [‡]	1309.23		181.207	5/2+	
1164.8 2	0.8^{\ddagger}	1790.40		625.60	$(9/2)^+$	
1165.5 ^{&} 2	0.7 [‡]	1306.40	$(7/2^+)$	140.641	7/2+	Additional information 5.
8-						$A_2 = +0.24 \ 9.$
1168.2 2	0.6	1309.23		140.641	7/2+	
1188.94 ^{°C} 5	1.5"	1329.49	$(1/2^{-})$	140.641	$7/2^+$	$A_2 = +0.24 \ I0.$
1203.48 3 1207 22ab 5	1.3 1.2h	1203.47	$(9/2^{+})$	0.0	9/2 · 0/2+	$A_2 = +0.22$ 9.
1207.32 3	1.5	1207.31	(1/2)	0.0	9/2' 0/2+	
1243.4 2	1./	1243.89	$(1/2^{+})$	0.0	9/2'	
1262.99 5	1.3"	1444.23	$(1/2^+, 3/2^+, 5/2)$	181.207	$5/2^{+}$	$A_2 = +0.17 \ 14.$

Continued on next page (footnotes at end of table)

98 Mo(3 He,pn γ) 1998Cr01 (continued)

$\gamma(^{99}\text{Tc})$ (continued)

E_{γ}^{\dagger}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Comments
1285.7 ^{&} 2	1.4	1426.27	$(9/2^+,7/2^+)$	140.641	7/2+	$A_2 = -0.29 \ 17.$
1353.6 2	0.7 [#]	1494.24		140.641	$7/2^{+}$	
1363.13 ^{&} 5	1.2 [#]	1503.82	$(3/2^+, 5/2^+)$	140.641	7/2+	$A_2 = +0.04 \ 11.$
1371.36 5	2.0	1552.59	$(7/2^+)$	181.207	$5/2^{+}$	$A_2 = 0.00$ 7.
1412.2 ^{&} 2	1.2	1552.59	$(7/2^+)$	140.641	$7/2^{+}$	
1422.60 5	1.1 [@]	1563.25	$(5/2^+, 7/2^+, 9/2^+)$	140.641	$7/2^{+}$	$A_2 = -0.37 \ 12.$
1424.54 5	1.1	1565.19	$(5/2^+, 7/2^+, 9/2^+)$	140.641	$7/2^{+}$	$A_2 = -0.21 \ II.$
1477.91 5	1.7	1659.13	$(3/2^+, 5/2^+, 7/2^+)$	181.207	$5/2^{+}$	$A_2 = -0.13 \ I3.$
1481.4 2	0.9 [#]	1622.05		140.641	$7/2^{+}$	
1507.1 ^{<i>a</i>} 2	1.1	1507.09	$(13/2^+, 15/2^+)$	0.0	9/2+	
1537.59 5	1.1 [#]	1678.27	$(5/2)^+$	140.641	$7/2^{+}$	$A_2 = -0.07 \ 21.$
1566.2 2	1.7	1566.21	$(11/2^+)$	0.0	9/2+	$A_2 = -0.34 \ 10.$
1627.2 2	1.1	1808.42	$(3/2^+, 5/2^+)$	181.207	$5/2^{+}$	

[†] Uncertainties of 0.05 and 0.2 keV are assigned based on a general comment in 1998Cr01.

[‡] Separate intensity is given for different components of closely spaced peaks in the spectrum, based on singles and coincidence data.

[#] The quoted intensity accounts for contribution from an impurity line.

[@] Contribution from an impurity and the other component of the doublet in ⁹⁹Tc has been subtracted in 1998Cr01.

& Observed in coincidence with following γ -rays, but placement is based on level-energy difference. In footnote 'b' in Table I of 1998Cr01, ⁹⁷Tc should read ⁹⁹Tc. ^{*a*} Placement based on level-energy difference.

^b γ missing in branching ratios given in Table V of 1998Cr01.

^c Multiply placed with intensity suitably divided.

⁹⁸Mo(³He,pnγ) 1998Cr01

999₄₃Tc₅₆

7

⁹⁹₄₃Tc₅₆

⁹⁸Mo(³He,pnγ) 1998Cr01

999 43 Tc₅₆