⁹⁹Rh β^+ decay (16.1 d) 1974An23,2000Mi05

	H	listory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	E. Browne, J. K. Tuli	NDS 145,25 (2017)	1-Jul-2017

Parent: ⁹⁹Rh: E=0.0; $J^{\pi}=1/2^-$; $T_{1/2}=16.1$ d 2; $Q(\beta^+)=2103$ 10; $\%\beta^+$ decay=100

⁹⁹Rh-Q(β⁺): Experimental value (1952Sc11). Q(g.s.)=2044 6 (2017Wa10) is in conflict with feeding of 2059.58 level.
Measured: γ, γγ, ce, β⁺ (1974An23), γ, γγ(θ) (1967Mo20), γ, γγ(t) (1972Gu01), γγ(θ) (1976ShYU), γγ(t), βγ(t) (1973Be72), γγ(θ,H,t) (1981Fo08,1973Ha61), K x ray-γ coin (1987BeYR,1986BeZJ).

Measured relative K-electron capture probabilities using the x- γ ray internal sum-coincidence technique (2000Mi05).

99Ru Levels

E(level)	J^{π}		T _{1/2}			Comments			
0.0 89.76 <i>5</i>	5/2 ⁺ 3/2 ⁺	2	20.5 ns 1	g=-0.189 4 g: From differential perturbed angular correlations (1965Ma27). $T_{1/2}$: from $\gamma\gamma(t)$ (1972Gu01). Others: 21.0 ns 6 (1973Be72), 20.7 ns 3 (1965Ma27). 20 ns L (1965Ki01). 19.7 ns 4 (1964Ba28)					
322.43 7	3/2+			(1) 001/1427),	20 110 1 (170				
442.78 6 576 27 16	$(3/2^+)$ $5/2^+$	<	:0.15 ns	$T_{1/2}$: from $\gamma\gamma(1)$	t) (1973Be72)				
618.09 6	$(1/2)^+$		1.04 ns 8	T _{1/2} : from $\beta \gamma$ (t	t) (1973Be72)				
734.10 20	$5/2^+$	0.5/2 ⁺)	0 15 m	T from and	$(1072 P_{0} 72)$				
896.98 9 998.71 <i>15</i> 1383.23 <i>11</i> 1414.25 <i>19</i> 1531.71 <i>11</i> 1662.14 <i>15</i> 1749.9 <i>3</i> 2059.58 <i>13</i>	$(1/2^+, 3/2)$ $(1/2^+, 3/2)$ $(1/2^+, 3/2)$ $(1/2^+, 3/2)$ $(1/2^+, 3/2)$ $(1/2^+, 3/2)$ $(1/2^+, 3/2)$ $(3/2^-)$	$(2,5/2^{+}) < 2,5/2^{+})$ $(2,5/2^{+})$ $(5/2^{+})$ (2) (2) (2)	0.15 ns	$T_{1/2}$: from $\gamma\gamma(t)$ (1973Be72).					
					ε, β^+ radiation	DNS			
E(decay)	E(level)	$I\beta^{+\dagger}$	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger}$	Comments			
(43 10)	2059.58		0.58 6	5.4 5	0.58 6	εK=0.65 18; εL=0.28 14; εM+=0.07 4			
(353 10)	1749.9		0.068 20	8.58 13	0.068 20	ε K=0.8563 5; ε L=0.1160 4; ε M+=0.02766 10			
(441 10) (571 10)	1531.71		1.11 9	7.81 <i>4</i>	1.11 9	$\varepsilon K=0.8617 2; \varepsilon L=0.11381 21; \varepsilon M+=0.02704 0$			
(689-10)	1414 25		0 34 6	8 4 9 8	0346	Relative probability of ε pk=0.871 32 (1987BeYR). ε K=0.8631 <i>I</i> : ε I =0.11069.8: ε M+=0.02619.3			
(720 10)	1383.23		1.90 <i>16</i>	7.78 4	1.90 <i>16</i>	εK =0.8634 <i>I</i> ; εL =0.11046 <i>8</i> ; εM +=0.02613 <i>2</i> $\varepsilon K(exp)$ =0.85 <i>7</i> compares to εK (Theory)=0.877 (2000Mi05).			
(1104 10)	998.71		0.82 9	8.53 5	0.82 9	εK=0.8657; εL=0.10868 3; εM+=0.025640 9			
(1206 10)	896.98		1.93 17	8.23 4	1.93 17	ε K=0.8657; ε L=0.10837 4; ε M+=0.025555 9 ε K(exp)=0.83 6 compares to ε K(Theory)=0.870 (20000Mi05).			
(1369 10)	734.10		0.30 8	10.00^{1u} 12	0.30 8	εK=0.8618; εL=0.11124 6; εM+=0.02635 2			
(1485 10)	618.09	0.70 7	45.0 23	7.048 24	45.7 23	av Eβ=209.6 43; εK=0.8534 11; εL=0.10619 16; εM+=0.02502 4 εK(exp)=0.87 1 compares to εK(Theory)=0.870 (20000Mi05). Relative εK(exp) probability=0.876 26 from K x ray-γ (1986BeZJ).			
(1527 10)	576.27	0.0013 2	0.37 6	10.10 ¹ <i>u</i> 8	0.37 6	av E β =246.8 46; ε K=0.8602 3; ε L=0.11026 8;			

Continued on next page (footnotes at end of table)

			⁹⁹ Rh	β^+ decay (10	5.1 d) 197	4An23,2000Mi05 (continued)	
ϵ, β^+ radiations (continued)							
E(decay)	E(level)	$I\beta^{+\dagger}$	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^\dagger$	Comments	
(1660 10)	442.78	1.61 13	31.3 18	7.30 3	32.9 19	ε M+=0.02609 2 av E β =285.2 44; ε K=0.8247 23; ε L=0.1023 3; ε M+=0.02410 8	
(1781 10)	322.43	0.43 5	4.6 5	8.20 5	5.0 5	ε K(exp)=0.88 4 compares to ε K(Theory)=0.871 (2000Mi05). av E β =337.3 44; ε K=0.792 4; ε L=0.0981 5; ε M+=0.02310	
(2013, 10)	80.76	17	63	8 22 25	7 4	$\varepsilon K(\exp)=0.86\ 6\ \text{compares to}\ \varepsilon K(\text{Theory})=0.869$ (20000Mi05). av $Ee - 430\ 1\ 44$; $\varepsilon K = 0.700\ 5$; $\varepsilon L = 0.0865\ 6$; $\varepsilon M = 0.02036$	
(2013-10)	89.70	1 1	05	0.22 23	/ 7	<i>av</i> Ep=439.1 44, <i>e</i> K =0.700 5, <i>e</i> E=0.0605 0, <i>ew</i> +=0.02050 <i>14</i>	
(2103 10)	0.0	<0.29	<3.6	>9.7 ¹ <i>u</i>	<3.9	av $E\beta$ =503.1 45; ε K=0.8007 22; ε L=0.1010 3; ε M+=0.02384 7 I ε : from I β ⁺ <0.3% follows I(ε + β ⁺)<3.9%.	

 † Absolute intensity per 100 decays.

$\gamma(^{99}{\rm Ru})$

I γ normalization: Assuming I(ε + β ⁺)(g.s)<3.9%. Additional information 1.

ω

Eγ	I_{γ}^{a}	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^{†‡}	<i>δ</i> &	α [@]	Comments
89.76 6	88 4	89.76	3/2+	0.0	5/2+	E2+M1	-1.56 2	1.481 23	α (K)exp=1.0 5; K/(L+M+N)+O=4.1 4 α (K)=1.163 18; α (L)=0.262 4; α (M)=0.0491 8 α (N)=0.00736 12; α (O)=0.000171 3 Mult., δ : from adopted gammas.
^x 119.4 <i>4</i> 175.43 <i>10</i>	<0.2 5.3 <i>3</i>	618.09	(1/2)+	442.78	(3/2+)	E2		0.1731	α (K)exp=0.16 3 α (K)=0.1454 21; α (L)=0.0228 4; α (M)=0.00423 6 α (N)=0.000653 10; α (O)=2.30×10 ⁻⁵ 4
232.70 15	1.30 15	322.43	3/2+	89.76	3/2+	(M1+E2)		0.048 [#] 17	$\alpha(K) \exp = 0.070 \ 25$ $\alpha(K) = 0.041 \ 14; \ \alpha(L) = 0.0055 \ 23; \ \alpha(M) = 1.02 \times 10^{-3} \ 42$ $\alpha(K) = 1.02 \times 10^{-4} \ 64; \ \alpha(D) = 7.0 \times 10^{-6} \ 20$
295.70 10	3.5 <i>3</i>	618.09	$(1/2)^+$	322.43	3/2+	(E2)		0.0282	$\alpha(N)=1.01\times10^{-5}04, \ \alpha(O)=7.0\times10^{-2}0^{-2}$ $\alpha(K)=0.0242 4; \ \alpha(L)=0.00325 5; \ \alpha(M)=0.000600 9$ $\alpha(N)=9.46\times10^{-5} 14; \ \alpha(O)=4.06\times10^{-6} 6$
322.45 10	16.4 8	322.43	3/2+	0.0	5/2+	M1+(E2)	-0.01 2	0.01365	$\alpha(K) = 0.0086$ $\alpha(K) = 0.0119517; \ \alpha(L) = 0.00139820; \ \alpha(M) = 0.0002574$ $\alpha(N) = 4.15 \times 10^{-5}6; \ \alpha(O) = 2.19 \times 10^{-6}3$ Mult: from adopted gammas
353.05 6	91.0 25	442.78	(3/2+)	89.76	3/2+	M1+E2	+0.16 +4-6	0.01100 17	α (K)exp=0.011 2 α (K)=0.00963 15; α (L)=0.001127 19; α (M)=0.000207 4 α (N)=3.35×10 ⁻⁵ 6; α (O)=1.76×10 ⁻⁶ 3 δ ; from 1974BeZI, Other: +0.6 4 (1976ShYU).
442.8 <i>2</i> 486 4 <i>2</i>	5.9 <i>10</i> 1 0 <i>1</i>	442.78 576.27	$(3/2^+)$ $5/2^+$	0.0 89.76	$5/2^+$ $3/2^+$				
528.24 7	100	618.09	(1/2)+	89.76	3/2+	M1+E2	+0.52 +3-2	0.00418	$\begin{aligned} &\alpha(\text{K}) \exp[(0.0038) \\ &\alpha(\text{K}) = 0.00366 \ 6; \ \alpha(\text{L}) = 0.000428 \ 7; \ \alpha(\text{M}) = 7.85 \times 10^{-5} \ 12 \\ &\alpha(\text{N}) = 1.268 \times 10^{-5} \ 19; \ \alpha(\text{O}) = 6.61 \times 10^{-7} \ 10 \\ &\alpha(\text{K}) \exp: \ \text{Reference value for calibration of } \alpha(\text{K}) \exp. \\ &\delta: \ \text{from } 1974\text{Be}11. \ \text{RUL rules out } \text{E}1 + \text{M2. } \delta = +0.21 + 14 - 20 \\ &\text{or } +1.1 + 1 - 2 \ \text{from } \gamma\gamma(\theta) \ (1976\text{ShYU}); \ \text{other: } 0.1 < \delta < 1.4 \\ &\text{from } \gamma\gamma(\theta) \ (1967\text{Mo}20). \end{aligned}$
576.3 <i>5</i> 618.13 <i>10</i>	0.38 8 11.0 <i>14</i>	576.27 618.09	$5/2^+$ $(1/2)^+$	0.0 0.0	5/2 ⁺ 5/2 ⁺				
734.1 2	0.8 2	734.10	5/2+	0.0	5/2*				

⁹⁹Rh $β^+$ decay (16.1 d) 1974An23,2000Mi05 (continued)

$\gamma(^{99}\text{Ru})$ (continued)

Eγ	I_{γ}^{a}	E_i (level)	\mathbf{J}_i^π	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Comments
796.0 5	0.2 1	1414.25	$(1/2, 3/2, 5/2^+)$	$\overline{618.09}$ $\overline{(1/2)^+}$	
807.25 10	3.0 2	896.98	$(1/2^+, 3/2, 5/2^+)$	89.76 3/2+	
896.90 15	2.1 3	896.98	$(1/2^+, 3/2, 5/2^+)$	$0.0 5/2^+$	
910.8	< 0.14	998.71	$(1/2^+, 3/2, 5/2^+)$	89.76 3/2+	I_{γ} : 0.13 in 1972Gu01.
940.4 2	3.4 <i>3</i>	1383.23	$(1/2^+, 3/2)$	442.78 (3/2 ⁺)	
998.70 15	2.1 2	998.71	$(1/2^+, 3/2, 5/2^+)$	$0.0 5/2^+$	
1060.75 15	0.6 1	1383.23	$(1/2^+, 3/2)$	322.43 3/2+	
1088.8 2	0.9 1	1531.71	$(1/2^+, 3/2)$	442.78 (3/2+)	
1209.32 15	0.50 7	1531.71	$(1/2^+, 3/2)$	322.43 3/2+	
1293.50 15	0.8 1	1383.23	$(1/2^+, 3/2)$	89.76 3/2+	
1324.5 2	0.7 1	1414.25	$(1/2, 3/2, 5/2^+)$	89.76 3/2+	
1383.5 5	0.2 1	1383.23	$(1/2^+, 3/2)$	$0.0 5/2^+$	
1441.8 <mark>6</mark> 3	0.14 ^b 5	1531.71	$(1/2^+, 3/2)$	89.76 3/2+	
1441.8 <mark>6</mark> 3	0.14 ^b 5	2059.58	$(3/2^{-})$	618.09 (1/2)+	
1483.2 2	0.40 7	2059.58	$(3/2^{-})$	576.27 5/2+	
1531.8 2	1.4 <i>I</i>	1531.71	$(1/2^+, 3/2)$	$0.0 5/2^+$	
1572.5 2	0.64 7	1662.14	$(1/2^+, 3/2)$	89.76 3/2+	
1616.8 2	0.54 6	2059.58	$(3/2^{-})$	442.78 (3/2+)	
1662.0 2	0.23 5	1662.14	$(1/2^+, 3/2)$	$0.0 5/2^+$	
1749.9 <i>3</i>	0.18 5	1749.9	$(1/2^+, 3/2)$	$0.0 5/2^+$	
1970.0 <i>3</i>	0.40 5	2059.58	$(3/2^{-})$	89.76 3/2+	
2059.2 3	0.06 2	2059.58	$(3/2^{-})$	$0.0 5/2^+$	

[†] Normalized to $\alpha(K)(528\gamma)=0.0038$ (average of $\alpha(K)(M1)=0.0036$ and $\alpha(K)(E2)=0.0040$).

[‡] From $\alpha(K)$ exp if not noted otherwise.

[#] Average of pure M1 and E2.

^(a) Additional information 2. [&] If no value given it was assumed δ =1.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.

^{*a*} For absolute intensity per 100 decays, multiply by 0.379 18.

^b Multiply placed with undivided intensity.

 $x \gamma$ ray not placed in level scheme.

99 Rh β^+ decay (16.1 d) 1974An23,2000Mi05

 $^{99}_{44}{
m Ru}_{55}$

5