⁹⁹Zr β^- decay 1998Lh03,1979Se01

	Η	History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	E. Browne, J. K. Tuli	NDS 145, 25 (2017)	1-Jul-2017

Parent: ⁹⁹Zr: E=0.0; $J^{\pi}=(1/2^+)$; $T_{1/2}=2.1$ s *1*; $Q(\beta^-)=4715$ *16*; $\%\beta^-$ decay=100.0

⁹⁹Zr source produced by fission of natural uranium induced by 25-MeV protons. On-line mass separation. Measured γ -ray singles and $\gamma\gamma$ coin with a 10-germanium detector array (1998Lh03).

Measured: γ , $\gamma\gamma$, $\gamma\gamma(t)$, $\gamma\gamma(\theta)$ (1979Se01); $\gamma\beta(t)$ (1990OhZY); γ (1970Ei02).

⁹⁹Nb Levels

E(level)	$J^{\pi \dagger}$	T _{1/2} ‡	Comments
0.0	9/2+	15.0 s 2	$T_{1/2}$: from Adopted Levels.
365.27 8	$1/2^{-}$	2.5 min 2	$T_{1/2}$: from Adopted Levels.
387.38 7	$(7/2^+)$	17 ps 4	
469.139 <i>13</i>	$(5/2)^+$	0.173 ns 4	$T_{1/2}$: from $\beta \gamma(t)$ (1990OhZY).
544.23 8	$3/2^{-}$	56 ps 10	
630.70 22	5/2-	-	
765.05 18	$3/2^{+}$		
816.73 14	$5/2^{+}$		
930.91 9	$(3/2)^+$	<10 ps	
959.31 8	$(1/2^+, 3/2^+)$	<10 ps	
1015.27 4	$(3/2)^+$	<5 ps	
1044.33 20			
1974.5 <i>4</i>	$(1/2^+, 3/2^+)$	<5 ns	
2336.3 <i>3</i>			

[†] From Adopted Levels.

[‡] From $\gamma\gamma(t)$ and $\beta\gamma(t)$ (1990OhZY), except as noted.

 β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft		Comments
(2379 16)	2336.3	0.13 4	5.99 14	av Eβ=971.1 75	
(2741 16)	1974.5	0.4 1	5.76 12	av Eβ=1140.5 76	
(3671 16)	1044.33	1.0 2	5.90 9	av E β =1581.4 77	
(3700 16)	1015.27	57 4	4.16 4	av Eβ=1595.3 77	
(3756 16)	959.31	30 2	4.47 <i>4</i>	av E β =1622.0 77	
(3784 16)	930.91	10 <i>I</i>	4.96 5	av Eβ=1635.6 77	
(3950 16)	765.05	0.02 1	7.74 22	av E β =1714.8 77	
(4171 16)	544.23	0.9 11	6.2 6	av Eβ=1820.4 77	
(4246 16)	469.139	<9	>5.2	av Eβ=1856.3 77	
(4328 16)	387.38	<2	>5.9	av E β =1895.5 77	
(4350 16)	365.27	<1.9	>5.9	av E β =1906.0 77	
				I β^- : if log <i>ft</i> >5.9.	

[†] Absolute intensity per 100 decays.

⁹⁹Zr $β^-$ decay **1998Lh03,1979Se01** (continued)

$\gamma(^{99}\text{Nb})$

I γ normalization: Normalization from decay scheme using $\Sigma(I(\gamma+ce)$ to g.s.)+ $\Sigma(I(\gamma+ce)$ to 365.3)=99.1 9 since I β (365.3)<1.9 if log *ft*>5.9, and I β (g.s.) is highly forbidden. Direct measurements: I γ normalization=0.56 8 (JOSEF), I γ normalization=0.38 4 (LOHENGRIN), both from comparison with fission product lines of known absolute intensity (1979Se01). I γ normalization=0.552 (1993De47).

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger b}$	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult. [‡]	$\alpha^{\&}$	Comments
28.4 1	0.39 11	959.31	(1/2+,3/2+)	930.91	(3/2)+	(M1)	8.50 15	$\alpha(K)=7.43\ 13;\ \alpha(L)=0.892\ 16;\ \alpha(M)=0.158\ 3$ $\alpha(N)=0.0229\ 4;\ \alpha(O)=0.001276\ 23$ %I γ =0.22 6. Mult.: from intensity balance at 930.88 level $\alpha(28.4\gamma) \le 5.9$, and a comparison with $\alpha(E2)=1084$ and $\alpha(M1)=8.63$.
$x_{46.1}^{a}$ 3	0.12 [@] 6							%Iy=0.07 4.
55.9 1	3.9 7	1015.27	$(3/2)^+$	959.31	(1/2+,3/2+)	[M1]	1.177	$\alpha(\mathbf{K})$ =1.029 <i>16</i> ; $\alpha(\mathbf{L})$ =0.1224 <i>19</i> ; $\alpha(\mathbf{M})$ =0.0216 <i>4</i> $\alpha(\mathbf{N})$ =0.00315 <i>5</i> ; $\alpha(\mathbf{O})$ =0.000177 <i>3</i> %I γ =2.2 <i>4</i> .
74.3 [@] 4	0.02 [@] 1	544.23	3/2-	469.139	$(5/2)^+$			%Iγ=0.011 <i>6</i> .
81.8 <i>1</i>	5.5 8	469.139	$(5/2)^+$	387.38	(7/2 ⁺)	[M1+E2]	1.4 10	$\alpha(K)=1.13$ 78; $\alpha(L)=0.22$ 19; $\alpha(M)=0.040$ 33 $\alpha(N)=0.0054$ 44; $\alpha(O)=1.58\times10^{-4}$ 99 %I $\gamma=3.0$ 5.
84.4 [@] 2	0.16 [@] 3	1015.27	$(3/2)^+$	930.91	$(3/2)^+$			%Iγ=0.088 17.
86.7 [@] 3	0.07 [@] 2	630.70	5/2-	544.23	3/2-	[M1+E2]	1.14 <i>81</i>	α (K)=0.93 64; α (L)=0.18 15; α (M)=0.032 26 α (N)=0.0043 34; α (O)=1.31×10 ⁻⁴ 81 %I γ =0.039 12.
^x 88.8 [@] 2	0.09 [@] 2							%Iγ=0.050 <i>12</i> .
113.4 [@] 4	$0.06^{\textcircled{0}}2$	1044.33		930.91	$(3/2)^+$			%Iγ=0.033 <i>12</i> .
$114.2^{\textcircled{0}}2$	0.31 [@] 7	930.91	$(3/2)^+$	816.73	5/2+			%Iγ=0.17 <i>4</i> .
165.6 ^{@c} 3	0.01 [@] 1	930.91	$(3/2)^+$	765.05	3/2+			%Iγ=0.006 <i>6</i> .
$x^{175.2}^{@}5$	0.09 [@] 3							%Iγ=0.050 17.
178.984 [#] 12	9.8 15	544.23	3/2-	365.27	1/2-	[M1+E2]	0.093 48	α (K)=0.080 40; α (L)=0.0109 62; α (M)=0.0019 11 α (N)=2.7×10 ⁻⁴ 15; α (O)=1.25×10 ⁻⁵ 55 %I γ =5.4 9.
198.0 [@] 5	$0.06^{\textcircled{0}}2$	1015.27	$(3/2)^+$	816.73	5/2+			%Iγ=0.033 <i>12</i> .
220.9 [@] 2	0.08 [@] 2	765.05	3/2+	544.23	3/2-	[E1]	0.01210	α (K)=0.01066 <i>16</i> ; α (L)=0.001196 <i>17</i> ; α (M)=0.000210 <i>3</i> α (N)=3.04×10 ⁻⁵ <i>5</i> ; α (O)=1.682×10 ⁻⁶ <i>24</i> %I γ =0.044 <i>12</i> .
250.4 [@] 3	0.04 [@] 1	1015.27	$(3/2)^+$	765.05	3/2+			%Iγ=0.022 <i>6</i> .
347.5 [@] 3	0.08 [@] 1	816.73	5/2+	469.139	(5/2)+	[M1+E2]	0.011 3	α (K)=0.0098 24; α (L)=0.00118 33; α (M)=2.07×10 ⁻⁴ 59 α (N)=3.00×10 ⁻⁵ 82; α (O)=1.6×10 ⁻⁶ 4 %I γ =0.044 6.

 \mathbf{b}

				⁹⁹ Zr /	³⁻ decay	1998Lh0	3,1979Se	01 (continued)	
						γ ⁽⁹⁹ Nb) (co	ontinued)		
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger b}$	E _i (level)	\mathbf{J}_i^π	E_{f}	J_f^π	Mult. [‡]	$\delta^{\ddagger a}$	α &	Comments
*363.0 [@] 5 365.1	0.06 [@] 3	365.27	1/2-	0.0	9/2+	[M4]		0.372	%I γ =0.033 17. α (K)=0.311 5; α (L)=0.0505 7; α (M)=0.00916 13 α (N)=0.001307 19; α (O)=6.26×10 ⁻⁵ 9 I $_{\gamma}$: a very weak transition observed at LOHENGRIN (1979Se01).
x379.2 [@] 5 384.8 [@] 3 386.5 [@] 3	$0.10^{@} 3$ $0.06^{@} 2$ $0.11^{@} 3$	1015.27 930.91	$(3/2)^+$ $(3/2)^+$	630.70 544.23	5/2 ⁻ 3/2 ⁻				%Iγ=0.055 17. %Iγ=0.033 12. %Iγ=0.061 17.
387.42 [#] 10	14.5 10	387.38	(7/2 ⁺)	0.0	9/2+	[M1]		0.00649	$\begin{aligned} &\alpha(\mathrm{K}){=}0.00571 \; 8; \; \alpha(\mathrm{L}){=}0.000646 \; 9; \; \alpha(\mathrm{M}){=}0.0001138 \; 16 \\ &\alpha(\mathrm{N}){=}1.667{\times}10^{-5} \; 24; \; \alpha(\mathrm{O}){=}9.68{\times}10^{-7} \; 14 \\ &\%\mathrm{I}\gamma{=}8.0 \; 7. \end{aligned}$
415.093 [#] 13 429.3 [@] 3	8.5 7 0.38 [@] 8	959.31 816.73	(1/2 ⁺ ,3/2 ⁺) 5/2 ⁺	544.23 387.38	3/2 ⁻ (7/2 ⁺)	[M1+E2]		0.0061 11	%I γ =4.7 5. α (K)=0.0053 9; α (L)=0.00062 13; α (M)=0.000110 22 α (N)=1.6×10 ⁻⁵ 3; α (O)=8.8×10 ⁻⁷ 13 %I γ =0.21 5.
^x 444.5 [@] 4 461.8 2	0.06 [@] 2 19.9 <i>10</i>	930.91	(3/2)+	469.139	(5/2)+	M1+E2	>1	0.0053 4	%Iγ=0.033 12. α (K)=0.0047 4; α (L)=0.00055 5; α (M)=9.7×10 ⁻⁵ 8 α (N)=1.40×10 ⁻⁵ 11; α (O)=7.6×10 ⁻⁷ 5 %Iγ=11.0 8.
469.137 [#] <i>13</i>	100 8	469.139	(5/2)+	0.0	9/2+	E2		0.00540	Mult., δ : δ large from $\gamma\gamma(\theta)$ and hence E1+M2 excluded. %I γ =55.2 22 α (K)=0.00473 7; α (L)=0.000563 8; α (M)=9.92×10 ⁻⁵ 14 α (N)=1.433×10 ⁻⁵ 20; α (O)=7.65×10 ⁻⁷ 11 Δ I γ =8 estimated by evaluators.
471.1 [@] 3 490.2 3	0.12 [@] 4 1.0 2	1015.27 959.31	$(3/2)^+$ $(1/2^+, 3/2^+)$	544.23 469.139	3/2 ⁻ (5/2) ⁺				Mult.: E2+M1, δ =-2.5. %I γ =0.066 23. %I γ =0.55 12.
499.9 [@] 3 ×536.7 [@] 3	$0.06^{@} 2$ $1.5^{@} 4$	1044.33		544.23	3/2-				%Iγ=0.033 <i>12</i> . %Iγ=0.83 <i>23</i> .
543.6 [@] 4 546.13 [#] 3	1.26 ^{^w} 18 87.8 20	930.91 1015.27	$(3/2)^+$ $(3/2)^+$	387.38 469.139	$(7/2^+)$ $(5/2)^+$	M1+(E2)	<-0.4	0.00290 6	%I γ =0.70 <i>11</i> . α (K)=0.00255 5; α (L)=0.000287 7; α (M)=5.06×10 ⁻⁵ <i>12</i> α (N)=7.41×10 ⁻⁶ <i>16</i> ; α (O)=4.30×10 ⁻⁷ 8 %I γ =4.8 3
x561.4 [@] 3 575.4 [@] 3 x581.0 4	$0.19^{@} 6$ $1.6^{@} 4$ ≈ 1	1044.33		469.139	(5/2)+				$\% I_{\gamma} = 0.5$ $\% I_{\gamma} = 0.10$ 4. $\% I_{\gamma} = 0.88$ 23. $\% I_{\gamma} = 0.6$ 3. E. L.: From 1979Se01 (LOHENGRIN separator)
593.994 [#] 18 ^x 600.4 [@] 4	49.5 <i>15</i> 0.06 [@] 2	959.31	(1/2 ⁺ ,3/2 ⁺)	365.27	1/2-				%Iγ=27.3 <i>19.</i> %Iγ=0.033 <i>12.</i>

ω

From ENSDF

 $^{99}_{41}\text{Nb}_{58}\text{-}3$

L

99 Zr β^- decay 1998Lh03,1979Se01 (continued)

γ (⁹⁹Nb) (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger b}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α &	Comments
627.9 9	3.7 5	1015.27	$(3/2)^+$	387.38	$(7/2^+)$			%Iy=2.0 3.
050.0 2	4.1 ð	1015.27	$(3/2)^{-1}$	303.27	1/2			\mathcal{E}_{γ} : placed by the evaluators.
816.7 [@] 3	0.12 [@] 4	816.73	5/2+	0.0	9/2+	[E2]	1.17×10^{-3}	α (K)=0.001028 <i>15</i> ; α (L)=0.0001168 <i>17</i> ; α (M)=2.06×10 ⁻⁵ <i>3</i> α (N)=3.00×10 ⁻⁶ <i>5</i> ; α (O)=1.695×10 ⁻⁷ <i>24</i>
960.0 8	0.61 12	1974.5	(1/2+,3/2+)	1015.27	(3/2)+			$\% I_{\gamma} = 0.066\ 23.$ $\% I_{\gamma} = 0.34\ 7.$ E_{γ} : from measurement at JOSEF (1979Se01).
1043.4 [@] 4	0.18 [@] 4	1974.5	$(1/2^+, 3/2^+)$	930.91	$(3/2)^+$			%Iγ=0.099 23.
1321.0 [@] 3	0.24 [@] 6	2336.3		1015.27	$(3/2)^+$			%Iγ=0.13 <i>4</i> .

[†] Weighted averages from 1998Lh03 and 1979Se01 (LOHENGRIN and JOSEF fission product separators), unless otherwise specified.

[‡] From $\gamma\gamma(\theta)$. Quadrupole γ' s are E2 since T_{1/2}<5 ns.

[#] Curved-crystal spectrometer measurement (1979Bo26).
[@] From 1998Lh03.
[&] Additional information 1.

^{*a*} If No value given it was assumed δ =1.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.

^b For absolute intensity per 100 decays, multiply by 0.55 3.

^c Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

From ENSDF

99 Zr β^- decay 1998Lh03,1979Se01

