Adopted Levels, Gammas

	History								
	Туре	Author	Citation	Literature Cutoff Date					
	Full Evaluation	E. Browne, J. K. Tuli	NDS 145, 25 (2017)	1-Jul-2017					
$Q(\beta^{-})=3635 \ 12; \ S(n)=68$	382 <i>13</i> ; S(p)=8338	<i>15</i> ; $Q(\alpha) = -3551 \ 14$ 2	017Wa10						
	⁹⁹ Nb Levels								
Additional information	1.								
		Cross Refere	ence (XREF) Flags						
		A 99 Zr β	decay						
		B ²² ND I	1 decay (2.5 min)						

С

 100 Mo(pol t, α) D E(level) $T_{1/2}$ XREF Comments 0.0 $9/2^{+}$ 15.0 s 2 ABCD $\%\beta^{-}=100$ $\mu = +5.97 \ 3$ Q=0.42 14 J^{π} : from L and analyzing power in (pol t, α). T_{1/2}: from 1972Tr08. Others: 14.3 s 6 (1970Ei02), 10 s 2 (1963Tr01). μ : Collinear Laser Spectroscopy (2009Ch25). Isotope shift $\Delta < r^2 > = +1.028 \text{ fm}^2 12 (2009 \text{Ch25}).$ Q: Collinear Laser Spectroscopy (2009Ch25). %β⁻>96.2; %IT<3.8 365.27 8 $1/2^{-}$ 2.5 min 2 ABCD %IT: A very weak γ has been observed in ⁹⁹Zr β^- decay. %IT deduced if B(M4)(W.u.)<30 (RUL). J^{π} : from L and analyzing power in (pol t, α). T_{1/2}: Weighted average of 2.6 min 2 (1971Ha07), 2.6 min 2 (1971Ca18), 2.3 min 3 (1963Tr01), 2.4 min 3 (1960Or02). J^{π} : $\gamma 387$ to $9/2^+$, $\gamma 628$ from $(3/2^+)$. T_{1/2}: Other: 17 ps 4 from $\gamma\gamma$ and $\beta\gamma$ in β^- decay (1990OhZY). 387.38 7 $(7/2^+)$ 12 ps 5 Α 0.175 ns 5 J^{π} : from L and the analyzing power in (pol t, α) and γ 546 M1+(E2) from 469.139 13 $(5/2)^+$ A D level $(3/2)^+$ at 1015.27 keV. T_{1/2}: from $\beta\gamma$ (t) in ⁹⁹Zr decay (1990OhZY). Other: 0.21 ns 6 (1982Ba36), 0.18 ns 9 (1997Lh01). T_{1/2}: Other: 173 ps 4 from $\gamma\gamma$ and $\beta\gamma$ in β^- decay (1990OhZY). XREF: C(562). 544.23 8 51 ps 13 A CD $3/2^{-}$ J^{π} : from L and analyzing power in (pol t, α). T_{1/2}: Other: 56 ps 10 from $\gamma\gamma$ and $\beta\gamma$ in β^- decay (1990OhZY), 60 ps 20 (1989Lh01), 0.26 ns 17 (1997Lh01). 630.70 22 J^{π}: from L and analyzing power in (pol t, α). $5/2^{-}$ A D $3/2^{+}$ 765.05 18 J^{π} : from L and analyzing power in (pol t, α). A D $5/2^{+}$ 816.73 14 A CD J^{π} : from L and analyzing power in (pol t, α). 930.91 9 $(3/2^+)$ <10 ps T_{1/2}: from 1990OhZY. Other value: 40 ps 13 (1997Lh01). Α D J^{π} : $\gamma 462 \text{ M1}+\text{E2 to } (5/2)^+$, 28.4γ (M1) from $(1/2^+)$. T_{1/2}: from 1990OhZY. Other: 30 ps 13 (1997Lh01). 959.31 8 $(1/2^+, 3/2^+)$ <10 ps Α J^{π} : log *ft*=4.5 from (1/2⁺). 970 10 1/2-,3/2-CD XREF: D(983). J^{π} : L(d, ³He)=1. 1015.27 4 $(3/2)^+$ <12 ps A D J^{π} : log *ft*=4.16 from (1/2⁺). T_{1/2}: Others: <5 ps (1990OhZY), 30 ps 13 (1997Lh01). 1044.33 20 A

 100 Mo(d, ³He)

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

⁹⁹Nb Levels (continued)

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}$	XREF	Comments
1264 9	3/2-		CD	XREF: C(1271)D(1253).
				J^{π} : from L and analyzing power in (pol t, α).
1305 12			D	
1408 9	$5/2^{-},7/2^{-}$		CD	J^{π} : L(d, ³ He)=3; (7/2 ⁺) from L and analyzing power in (pol t, α).
1543 12			D	
1579 8	5/2-,7/2-		CD	XREF: C(1573).
				J^{π} : L(d, ³ He)=3.
1703 15			D	
1759 <i>13</i>	$(3/2)^{-}$		CD	XREF: C(1746)D(1771).
				J^{π} : L(d, ³ He)=1; (3/2 ⁻) from L and analyzing power in (pol t, α).
1831 20			D	
1921 20			D	
1974.5 <i>4</i>		<5 ns	A CD	XREF: C(1967)D(1982).
				$T_{1/2}$: Other value: 70 ps 23 (1997Lh01).
2336.3 3			Α	

[†] Level energies with ΔE<1 keV have been deduced from a least-squares fit to adopted gammas; the others are from (pol t,α) or weighted averages of (pol t,α) and (d,³He).
[‡] From γγ(t) by 2013RuZX using induced-fission on ²³⁵U, except where noted otherwise.

						Adopted Levels, Gammas (continued)					
							$\gamma(9)$	⁹ Nb)			
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	$\delta^{\ddagger@}$	α #	Comments		
365.27	1/2-	365.1	100	0.0	9/2+	[M4]		0.372	$\alpha(K)=0.311$ 5; $\alpha(L)=0.0505$ 7; $\alpha(M)=0.00916$ 13		
387.38	(7/2+)	387.42 10	100	0.0	9/2+	[M1]		0.00649	$\alpha(N)=0.001307 \ 19; \ \alpha(O)=6.26\times10^{-3} \ 9 \\ \alpha(K)=0.00571 \ 8; \ \alpha(L)=0.000646 \ 9; \ \alpha(M)=0.0001138 \ 16 \\ \alpha(N)=1.667\times10^{-5} \ 24; \ \alpha(O)=9.68\times10^{-7} \ 14 \\ R(M1)(Wn)=0.031 \ 13 \\ R(M1)(Wn)=0.031 \ 13$		
469.139	(5/2)+	81.8 <i>1</i>	5.5 8	387.38	$(7/2^+)$	[M1+E2]		1.4 10	$\alpha(\text{K})=1.13\ 78;\ \alpha(\text{L})=0.22\ 19;\ \alpha(\text{M})=0.040\ 33$ $\alpha(\text{N})=0.0054\ 44;\ \alpha(\text{O})=1\ 58\times10^{-4}\ 99$		
		469.137 <i>13</i>	100 8	0.0	9/2+	E2		0.00540	$\alpha(K)=0.00473 \ 7; \ \alpha(L)=0.000563 \ 8; \ \alpha(M)=9.92\times10^{-5} \ 14$ $\alpha(N)=1.433\times10^{-5} \ 20; \ \alpha(O)=7.65\times10^{-7} \ 11$ B(E2)(W.u.)=4.6 6		
544.23	3/2-	74.3 4	0.20 11	469.139	(5/2)+	[E1]		0.284 6	$\Delta I\gamma$ =8 estimated by evaluators. α (K)=0.249 6; α (L)=0.0290 7; α (M)=0.00505 11 α (N)=0.000720 16; α (O)=3.59×10 ⁻⁵ 8 α (C)=1.00V m λ =2 8×10 ⁻⁵ 18		
		178.984 <i>12</i>	100 16	365.27	$1/2^{-}$	[M1+E2]		0.093 48	B(E1)(W.u.)=2.8×10 ⁻¹ 78 $\alpha(K)=0.080 \ 40; \ \alpha(L)=0.0109 \ 62; \ \alpha(M)=0.0019 \ 11$ $\alpha(L)=2.7\times10^{-4} \ 15; \ \alpha(D)=1.25\times10^{-5} \ 55$		
630.70	5/2-	86.7 <i>3</i>	100	544.23	3/2-	[M1+E2]		1.14 81	$\alpha(\mathbf{K}) = 2.7 \times 10^{-17}, \alpha(\mathbf{C}) = 1.23 \times 10^{-55}$ $\alpha(\mathbf{K}) = 0.93 \ 64; \ \alpha(\mathbf{L}) = 0.18 \ 15; \ \alpha(\mathbf{M}) = 0.032 \ 26$ $\alpha(\mathbf{K}) = 0.09424; \ \alpha(\mathbf{L}) = 0.18 \ 15; \ \alpha(\mathbf{M}) = 0.032 \ 26$		
765.05	3/2+	220.9 2	100	544.23	3/2-	[E1]		0.01210	$\alpha(N)=0.0043\ 54;\ \alpha(O)=1.51\times10\ 81$ $\alpha(K)=0.01066\ 16;\ \alpha(L)=0.001196\ 17;\ \alpha(M)=0.000210\ 3$ $\alpha(N)=2.04\times10^{-5}\ 5;\ \alpha(O)=1.682\times10^{-6}\ 24$		
816.73	5/2+	347.5 <i>3</i>	21 3	469.139	$(5/2)^+$	[M1+E2]		0.011 3	$\alpha(N) = 3.04 \times 10^{-5}$ 5, $\alpha(O) = 1.082 \times 10^{-24}$ $\alpha(K) = 0.0098$ 24; $\alpha(L) = 0.00118$ 33; $\alpha(M) = 2.07 \times 10^{-4}$ 59 $\alpha(N) = 3.00 \times 10^{-5}$ 82; $\alpha(O) = 1.6 \times 10^{-6}$ 4		
		429.3 <i>3</i>	100 21	387.38	$(7/2^+)$	[M1+E2]		0.0061 11	$\alpha(N)=3.00\times10^{-6}$ 82, $\alpha(O)=1.0\times10^{-4}$ $\alpha(K)=0.0053$ 9; $\alpha(L)=0.00062$ 13; $\alpha(M)=0.000110$ 22 $\alpha(N)=1.6\times10^{-5}$ 3; $\alpha(O)=8.8\times10^{-7}$ 13		
		816.7 3	32 11	0.0	9/2+	[E2]		1.17×10^{-3}	$\alpha(K) = 0.001028 \ I5; \ \alpha(L) = 0.0001168 \ I7; \ \alpha(M) = 2.06 \times 10^{-5}$		
									$\alpha(N)=3.00\times10^{-6} 5; \alpha(O)=1.695\times10^{-7} 24$		
930.91	$(3/2^+)$	114.2 2	1.6 4	816.73	$5/2^{+}$						
		165.6 ^{&} 3	0.05 5	765.05	$3/2^{+}$						
		386.5 <i>3</i>	0.55 15	544.23	3/2-				<i>.</i>		
		461.8 2	100 5	469.139	(5/2)+	M1+E2	>1	0.0053 4	$\alpha(K)=0.0047 \ 4; \ \alpha(L)=0.00055 \ 5; \ \alpha(M)=9.7\times10^{-5} \ 8$ $\alpha(N)=1.40\times10^{-5} \ 11; \ \alpha(O)=7.6\times10^{-7} \ 5$ B(E2)(W.u.)>45 Mult. $\delta; \ \delta$ large from $\gamma\gamma(\theta)$ and hence E1+M2 excluded.		
									Additional information 2.		
		543.6 <i>4</i>	6.3 9	387.38	$(7/2^+)$						

ω

L

Adopted Levels, Gammas (continued)										
γ ⁽⁹⁹ Nb) (continued)										
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	J_f^π	Mult. [‡]	$\delta^{\ddagger @}$	α [#]	Comments	
959.31	(1/2 ⁺ ,3/2 ⁺)	28.4 1	0.79 23	930.91	(3/2+)	(M1)		8.50 15	α(K)=7.43 13; α(L)=0.892 16; α(M)=0.158 3 α(N)=0.0229 4; α(O)=0.001276 23 B(M1)(W.u.)>0.59 Mult.: From γ-ray intensity balance at 930.88 level α(28.4γ)≤5.9, and a comparison with theoretical α(E2)=1084 and $α(M1)=8.50$. Additional information 3.	
		415.093 <i>13</i> 490.2 <i>3</i> 593 994 <i>18</i>	17.2 <i>15</i> 2.0 <i>4</i> 100 <i>3</i>	544.23 469.139 365.27	$3/2^{-}$ (5/2) ⁺ 1/2 ⁻					
1015.27	(3/2)+	55.9 1	4.4 8	959.31	$(1/2^+, 3/2^+)$	[M1]		1.177	α (K)=1.029 <i>16</i> ; α (L)=0.1224 <i>19</i> ; α (M)=0.0216 <i>4</i> α (N)=0.00315 <i>5</i> ; α (O)=0.000177 <i>3</i> B(M1)(W.u.)>0.38 Additional information 4.	
		84.4 2 198.0 5 250.4 3 384.8 3 471.1 3	0.18 <i>4</i> 0.068 <i>23</i> 0.046 <i>12</i> 0.068 <i>23</i> 0.14 5	930.91 816.73 765.05 630.70 544.23	(3/2 ⁺) 5/2 ⁺ 3/2 ⁺ 5/2 ⁻ 3/2 ⁻					
		546.13 <i>3</i>	100.0 23	469.139	(5/2)+	M1+(E2)	<-0.4	0.00290 6	α (K)=0.00255 5; α (L)=0.000287 7; α (M)=5.06×10 ⁻⁵ 12 α (N)=7.41×10 ⁻⁶ 16; α (O)=4.30×10 ⁻⁷ 8 B(M1)(W.u.)>0.0081 Additional information 5.	
1044.33		627.9 9 650.0 2 113.4 4	4.2 6 4.7 10 3.8 13	387.38 365.27 930.91	$(7/2^+)$ $1/2^-$ $(3/2^+)$				E_{γ} : placed by the evaluators.	
1974.5		499.9 <i>3</i> 575.4 <i>3</i> 960.0 <i>8</i>	3.8 <i>13</i> 100 <i>25</i> 100 <i>20</i>	544.23 469.139 1015.27	$3/2^{-}$ (5/2) ⁺ (3/2) ⁺				E_{γ} : from measurement at JOSEF (1979Se01).	
2336.3		1043.4 <i>4</i> 1321.0 <i>3</i>	30 7 100	930.91 1015.27	$(3/2^+)$ $(3/2)^+$					

4

[†] From ⁹⁹Zr β⁻ decay.
[‡] From γγ(θ) in ⁹⁹Zr β⁻ decay.
[#] Additional information 6.
[@] If No value given it was assumed δ=1.00 for E2/M1, δ=1.00 for E3/M2 and δ=0.10 for the other multipolarities.
[&] Placement of transition in the level scheme is uncertain.

From ENSDF

 $^{99}_{41}\text{Nb}_{58}\text{-}4$

 $\boldsymbol{\nabla}$

 $^{99}_{41}\text{Nb}_{58}\text{-}5$

From ENSDF