			History	
	Туре	Author	Citation	Literature Cutoff Date
	Full Evaluation	E. Browne, J. K. Tuli	NDS 145, 25 (2017)	1-Jul-2017
$Q(\beta^{-})=1357.8 \ 9; \ S(n)=59$	925.44 <i>15</i> ; S(p)=97	34 5; $Q(\alpha) = -2735.1 9$	2017Wa10	
Additional information 1.				
Other reactions:				
98 Mo(n, γ): 2015Ud02, 20	015Wa18, 2014Ba3	3, 2014Kh01, 2013Jo07,	2013Me11, 2013Li43, 2	2011Vo14, 2010Bu06, 2010El02,
2010La04, 2010Me14	4, 2009Bh06, 2009N	vg01, 2003CaZW, 2002	Ab03, 1998Bu28.	
99 Tc(n,p): 2009Re01.				
102 Ru(n, α): 2007Lu19.				
209 Pu(n,F): 2014Ch34, 20	012Th05, 2010ChZ	X, 2010Se15 2005AdZZ	514 2005D 00 2002E	
Mo(n,2n): 2014NaZX,	, 2014 SeZW, 2014 V	wo03, 2013Na16, 2010N	1114, 2005Re09, 2003Th	111.
$U(\Pi, \mathbf{A})$: 2005IVIIZZ. 209 $\mathbf{P}_{i}(\mathbf{a}, \mathbf{E})$: 2000Na10				
$100 M_{O}(\alpha, p)$: 2015 Po01 2	0135:03 20135-04	2013U+02 2012B-22 /	$2011D_{7}02 - 2010E_{0}07 - 20$	007522 2006Er06 2005KbZV
$1003D_{2}27$.015EJ05,20155204	, 20150102, 2012De22, 2	2011D202, 2010E107, 20	0921122, 2000E100, 2003K112 V,
$M_0(n,F)$, (n,γ) , $(n,2n)$; 20)11Ad18.			
100 Mo(γ .p): 2014Is10.				
¹⁰⁰ Mo(p,np): 1999Sc11.				
¹⁰⁰ Mo(p,X): 2015Pu02, 2	2014Ma77, 2014Wo	03, 2010Le13, 2003Ta09	9, 1993La29.	
¹⁰⁰ Mo(d,X): 2011Ta01.	,	, ,		
Mo(<i>α</i> ,X): 2012Di10, 201	2Ta04, 2011Ch33,			
¹³⁶ Xe(p,X): 2007Na31.				
²⁴¹ Am(p,X) E=600 MeV	: 2002Ad12.			
Pb(p,X): 2001Gl05.				
Pb(p,F): 2001Ku28.				
Pb(γ ,F): 2011Na09.				
²³⁵ U, ²³⁸ U(n,F): 2014Fa1	7, 2010Ad13.			
235 U(n,F): 2013Me05, 20	13Ri03.			
$^{257}Np(d,X): 2007KrZY.$				
$^{90}Zr(\alpha,n): 2015Pu02, 201$	14Pu02, 2014Wo03,	2006Av02, 1995Ch83.		
101 Ta(20 Ne,F): 2006 Ir05.				
232 Th($^{\prime}$ L1,F): 2010RE01, 232 Th($^{\prime}$ E): 2014Na02, 20	20021109.	1		
232 Th(γ , Γ): 2014[Na02, 20]	0121Na04, 2010De0	Ι.		
232 Th(p,F): 2012Ab07				
$232 \text{Th}(20 \text{Ne E}) \cdot 2013 \text{Tr}(7)$				
$100 Mo(^{32}S ^{33}S)$ 2002Ma	01			
$^{96}Mo(^{32}S,^{29}S)$: 1995He1	7.			
Neutron resonances: 2000	6MuZX.			
²⁵² Cf spontaneous fission	: 2013Mc04.			

99 Mo Levels

L transfer values in 97 Mo(t,p) often do not agree with adopted J^{π} values; either they are incorrect or belong to a different level.

Cross Reference (XREF) Flags

Α	99 Nb β^{-} decay (15.0 s)	F	⁹⁸ Mo(d,p)	K	100 Mo(3 He, α)
В	99 Nb β^- decay (2.5 min)	G	98 Mo(d,p γ)	L	96 Zr(α ,n γ)
С	⁹⁷ Mo(t,p)	Н	100 Mo(γ ,n γ')	Μ	¹⁰⁰ Mo(pol p,d)
D	98 Mo(n, γ) E=thermal	I	100 Mo(p,d),(d,t)	N	100 Mo(136 Xe,X γ)
Е	98 Mo(n, γ) E=resonance	J	100 Mo(d,t),(pol d,t),	0	27 Al(178 Hf,X γ)

E(level) [‡]	${ m J}^{\pi \#}$	T _{1/2}	XREF	Comments
0.0	1/2+	65.924 h 6	ABCDEFGHI LMNO	%β ⁻ =100
				μ =+0.375 3 (2014StZZ)
				J^{π} : atomic-beam magnetic resonance (1974Ru05); L(d,t)=0.
				$T_{1/2}$: Value corrected for ionization chamber source-holder
				T _{1/2} : Other values: 65 976 h 24 (2004Wo02) 65 974 h 14
				(2004Sc04), 65.924 h 5 (2002Un02), 65.945 h 3 (1980Ho17).
				65.924 h 6 (1982HoZJ), 65.942 h 12 (1983Wa26), 66.02 h 1
				(1972Em01), 66.16 h 30 (1979Di07), 66.5 h 2 (1971Ba28),
				66.69 h 6 (1968Re04), 65.98 h 10 (1967Ba37), 66.7 h 1
				(1965Cr03), 67.2 h 2 (1958Pr71), 66.96 h 9 (1957Wr37), (600 h 15 (1957Cr 62), 001 h 2011Cl 51, 2000Cl 01)
07 785 3	5/2+	155 48 2	ARCDEECHT IKI MNO	00.00 n IS (195/Gu02). Other: 2011CnS1, 2000Cn01.
91.105 5	5/2	$15.5 \ \mu s \ z$	ADCDEP GITT JKEIINO	$\mu^{0.775} = 0$ on $5/2^+$ target.
				$T_{1/2}$: from (γ, γ') (1978Ba18). Other: 16.9 μ s 14 from pulsed
				particle beam experiment (1978Ho06), 13 μ s 2 from $\beta\gamma$ (t) in
				⁹⁹ Nb β^- decay (2.56 min) (1971Ca18), 16.3 μ s 10 from
				100 Mo(γ ,n γ') (1958Du80).
				μ : From g=-0.310 2 (average of g=-0.3110 14 from (α ,n γ)
				(liquid target) and $g=-0.3092 \ I0 \ \text{from } (d,p\gamma)$ (heated solid target)) (1978Pa21)
235.508 8	7/2+	0.87 ns 15	ABCD FGHIJKLMNO	J^{π} : L(p,d)=4: 138 γ (M1) to 5/2 ⁺ .
				$T_{1/2}$: from centroid shift of $\beta \gamma(t)$ in β^- decay (15 s)
				(1982Ba36).
351.22 6	3/2+	0.23 ns 17	ABCDEFG IJ LM	$T_{1/2}$: From 1997Lh01.
525 103 16	1/2+		RCDEEC II IM	$J^{*}: L(p,d)=2; 551\gamma \text{ M1}(\pm E2) \text{ to } 1/2^{*}.$
548.73 8	$3/2^+$	0.030 ns 25	ABCDEFG J L	$T_{1/2}$: From 1997Lh01.
	-/-			J^{π} : L(d,t)=2; vector analyzing power in (pol d,p) determines
				J=3/2. 549 γ M1+E2 to 1/2 ⁺ .
615.02 9	$5/2^{+}$		ABCDEFG IJKLM	J^{π} : L(d,t)=2; vector analyzing power in (pol d,t) determines
631 78 12	3/2+			J=5/2. $I^{\pi}: 632\alpha M1(+E2) \alpha$ to $1/2^{+}: 534\alpha$ to $5/2^{+}$ is dipole. A I-1
684 10 10	$\frac{3}{2}$	0.76		J : 0.527 W1(± 122) 7 to $1/2$, 5547 to $5/2$ is upore, $23-1$.
084.10 19	11/2	$0.76 \ \mu s \ 0$	A FGHIJKLINU	AREF: $\Gamma(000)$. I^{π} : I (n d)=5: excit: $\gamma(\theta)$ for 449 γ is isotronic
				$T_{1/2}$: from (1978Ba18). Other: 0.75 μ s 30 in (d,py)
				(1975Di15).
698.09 <i>16</i>	$(7/2^+)$		AC GJL	J ^{π} : from $\gamma(\theta)$ for γ' s to 7/2 ⁺ , 5/2 ⁺ and γ from 9/2 ⁺ ; note,
				however, that $L(d,t)=3$ and vector-analyzing power in (pol d,p)
752 41 22	$(3/2^+ 5/2^+)$		BC CT	suggest $J^{n}=5/2$. I^{n} : I = 2 in (n d)
754.18.20	(3/2, 3/2) $7/2^{-}$		ABCD G 1 L	I^{π} : 656y E1 to 5/2 ⁺ note, also, that L(d,t)=3 and vector
	.,_			analyzing power in (pol d,t) suggest $J^{\pi}=7/2^{-1}$. See 1988Du02
				for discussion of J^{π} .
792.93 12	3/2+		BC E G IJ M	XREF: J(797).
				J [*] : 442 γ MI to 3/2 ⁺ , 793 γ (MI, E2) to 1/2 ⁺ . L(d,t)=2; vector analyzing power in (pol d p)
798			F	L(d,p)=(3)
865.87 12	$(7/2^+)$		A KL	XREF: K(858).
				J ^{π} : From logft=6.1 in β^{-} feeding in ⁹⁹ Nb (15.0 s) β^{-} decay.
890.58 14	3/2+		BC EFG IJ	XREF: F(896)J(894).
				J^{π} : 890 γ M1,E2 to 1/2 ⁺ , L(d,t)=2; vector-analyzing power in
905 13 11	1/2+		RODE C 1 IM	(poi a,p). XREE: 1(012)
JUJ.TJ 14	1/2		DCDE G J LII	J^{π} : L(d,t)=0.
905.99 19	$(9/2)^+$		Ac G L	J^{π} : 808 γ E2 to 5/2 ⁺ , 671 γ M1+E2 to 7/2 ⁺ .
924 12	3/2+,5/2+		FI	XREF: F(913).
044 (1-14	5 /2+			J^{π} : L=2 in (p,d) and (d,t).
944.61 <i>14</i>	5/2 '		BCEG JLM	XKEF: J(951).

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

⁹⁹Mo Levels (continued)

E(level) [‡]	J ^{π#}	XREF	Comments						
052	_	F	J^{π} : L(t,p)=0 on 5/2 ⁺ target.						
952	$(5/2^+)$	r BCDFGTI	J ^{**} : L(d,p)=5. $I^{\pi_{*}}$ (M1 E2) γ rays to $1/2^{+}$ and $5/2^{+}$: γ ray to $7/2^{(+)}$ $7/2^{-}$						
1029.00 12	$(3/2^{-})$ $3/2^{-}$	FG IJ	J^{π} : L(d,t)=1: vector-analyzing power in (pol d,t).						
1048.03 16	7/2+	Ac GJLM	J^{π} : 433 γ M1+E2 to 5/2 ⁺ , 697 γ E2 to 3/2 ⁺ ; note, however, that L(d,t)=3 and						
			vector analyzing power in (pol d,p) suggest $J^{\pi}=5/2^{-}$.						
1142.81 12	$(7/2^+)$	A L	J^{π} : From logft=5.9 in β^{-} feeding in ⁹⁹ Nb (15.0 s) β^{-} decay.						
11/9 2	5/0- 7/0-	,	Additional information 2. π_{1} I (4.4)=2						
1140.5	3/2, $1/2$	J	J : L(0,t) = 5.						
1165.4 11	(15/2) $5/2^+$	I LMNU BCFGII	$J^{*}: 481\gamma E2$ to 11/2; excit.						
1107.45 21	5/2	Delleri	J^{π} : L(t,p)=0 on 5/2 ⁺ target.						
1195.6 11		c L	XREF: c(1198).						
1197.69 23	3/2+	BcD J M	XREF: c(1198)J(1201).						
	T (0.1		J^{π} : L(d,t)=2; vector-analyzing power in (pol d,t).						
1254.2 5	5/2+	EGJ	XREF: J(1258). \mathcal{I}_{τ} J (d.f.) 2: substant employing memory in (and d.g.)						
1261	1/2+	F M	J^{**} : L(d,t)=2; vector-analyzing power in (pol d,p). I^{π_*} : L(d, p)=0						
1272.3 7	1/2	Ac L	XREF: c(1278).						
1280.4 5		c G	XREF: c(1278).						
1283.0 4		Bc L							
1314.03 22	$(11/2)^+$	A L	J^{π} : 1078 γ E2 to 7/2 ⁺ , 408 γ M1+E2 to (9/2) ⁺ .						
1342.76 15	$(1/2)^{+}$	IJ L	XREF: $I(1320)J(1352)$.						
135276		1	J^{*} : L=4 in (pol p,d), (d,t), (d,p), γ Nb (15.0 d) β decay. I^{π} : L(p,d)=4						
1354.3 3		B L	J. Ľ(þ,u)–4.						
1367.6 11		L							
1382.6 4	3/2+,5/2+	Bc EF M	XREF: c(1397).						
			J^{π} : L(d,p)=2.						
1401.31 17	$(1/2^{+})$	Ac L	XREF: $c(1397)$.						
1404 8 15	(17/2)	т	J [*] : β feeding in β Nb (15.0 s) β decay.						
1404.8 15	(17/2) $(3/25/2)^+$	BC G	J. excit, 2597 dipole to $15/2^{-1}$ gives $\Delta J = 1$. $I^{\pi} \cdot I_{t}(t, p) = 2 \cdot \log t^{1/2} t = 9.6 \log t = 8.3 \text{ from } 1/2^{-1}$						
1449.5 10	$3/2^+, 5/2^+$	fiL	J^{π} : L(p,d) and L(d,t)=2.						
1455.3 21	$3/2^+, 5/2^+$	Ef i	J^{π} : L(p,d)=2.						
1464.5 6	$(9/2)^+$	Ac L	J ^{π} : 1229 γ M1+E2 to 7/2 ⁺ ; 1367 γ to 5/2 ⁺ ; no γ ray to J≤3/2.						
1466.5 12	$1/2^+, 3/2^+, 5/2$	D							
14/1.7 8	$(11/2)^+$		J^{A} : 566 γ M1+E2 to (9/2) ⁺ ; excit.						
1495.30 24	5/2	B F IJKLM	AREF. J(1497). I^{π} . I (d t)=2: vector analyzing power in (nol d t)						
1533.1 21	$3/2^+, 5/2^+$	CEi	XREF: C(1546).						
	, , ,		J^{π} : L(p,d)=2.						
1536.5 11		AC L	XREF: C(1518).						
1545 3	5/2+	FJ	J^{π} : L(d,t)=2; vector analyzing power in (pol d,t).						
1560.59 22	1/2,3/2,5/2+	BE	$J^{\pi}: \log f^{1}t = 8.7, \log ft = 7.5$ from $1/2^{-}$.						
15/1.3 4	1/2, 3/2, 5/2	BCEG	J^{*} : log f^{*} t=9.5, log ft=8.3 from 1/2 . I^{*} : L (d t)=2; vector analyzing power in (pol d p)						
1618 10	$(3/2^{-} 5/2^{-} 7/2^{-})$	СК	S = E(u,t) - 2, vector analyzing power in (por u,p). XREF: $C(1615)K(1621)$						
1010 10	(3/2 ,3/2 ,7/2)	C K	J^{π} : L(t,p)=(1), L(³ He. α)=4 is not consistent with wih J^{π} assignment.						
1634.8 <i>21</i>	$3/2^+, 5/2^+$	CE L	XREF: C(1645).						
			J^{π} : L(t,p)=4 on 5/2 ⁺ target; γ from p-wave resonance.						
1639.37 25	9/2-	A I L	J^{π} : L(p,d) and L(d,t)=5, 1403.7 γ to 7/2 ⁺ .						
1661.1 25		C EF							
10/3.3 11	$(13/2^+)$	L	I^{π} excit: γ to $9/2^+$ is AI=2 F2						
1682.2.4	$(3/2^+, 5/2^+)$	Bc	$J^{\pi}: \log t^{4} t = 9.1, \log t = 7.9$ from $1/2^{-1}: \gamma$ to $7/2^{+1}$						
1002.2 7	(3/2 ,3/2)		· · · · · · · · · · · · · · · · · · ·						

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

⁹⁹Mo Levels (continued)

E(level) [‡]	$J^{\pi \#}$	XREF	Comments						
1710.2 <i>19</i> 1722 1741.5 <i>21</i>	3/2 ⁺ ,5/2 ⁺ 1/2 ⁻ ,3/2 ⁻	CEI CF E	J^{π} : L(p,d)=2. J^{π} : L(d,p)=1.						
1755 1778 1799 7	3/2 ⁺ ,5/2 ⁺ 5/2 ⁻ ,7/2 ⁻ 7/2 ⁺ ,9/2 ⁺	F M K CFI	J^{π} : L(d,p)=2. J^{π} : L(³ He, α)=3. E(level): weighted average of 1793 <i>10</i> from (p,d) and 1806 <i>10</i> from (t,p). J^{π} : L(p,d)=4.						
1813.4 <i>3</i> 1828 <i>10</i> 1845	+	A C F	J^{π} : L(t,p)=2.						
1857.91 16	$(9/2, 11/2)^+$	Α	J^{π} : 1622 γ to 7/2 ⁺ .						
1858.0 [†] 15 1884.9 15 1893.39 16	(19/2 ⁻) (15/2 ⁻) (3/2 ⁻)	LMNO L BCE IJK	J^{π} : excit; γ to (15/2 ⁻) is $\Delta J=2$, E2. J^{π} : excit. XREF: J(1893). J^{π} : log <i>ft</i> =6.6, log <i>f</i> ^{4u} <i>t</i> =7.7 from 1/2 ⁻ . L(p,d)=1. L(d,t)=3 is probably in error.						
1909 <i>10</i> 1931.6 <i>12</i> 1934 <i>12</i> 1949.5 <i>21</i>	1/2 ⁻ ,3/2 ⁻ 1/2 ⁺ 7/2 ⁺ ,9/2 ⁺ 1/2 ⁺	C I DEF j C I CEF J M	γ ray to (5/2 ⁺) states. J^{π} : L(p,d)=1. J^{π} : L(d,p)=0. J^{π} : L(p,d)=4. XREF: J(1944). I^{π} : L(d,t)=0						
1965 1987.4 <i>3</i> 2000 <i>15</i>	1/2+	AF A C	J^{π} : L(d,p)=0.						
2024 <i>15</i> 2055.5 <i>21</i> 2059.68 <i>24</i>	3/2 ⁻ ,5/2 ⁻ ,7/2 ⁻ 3/2 ⁻ ,5/2 ⁻ ,7/2 ⁻	C A C E A	J^{π} : L(t,p)=1. J^{π} : L(t,p)=1.						
2078 2103 <i>20</i> 2134.46 <i>18</i>	9/2 ⁻ ,11/2 ⁻ 7/2 ⁺ ,9/2 ⁺ 3/2 ⁻	K I BEI	J^{π} : L(³ He, α)=5. J^{π} : L(p,d)=4. XREF: I(2155). I^{π} : L (p,d)=1: α to $5/2^{+}$						
2160 <i>3</i> 2174.67 <i>23</i> 2179.5 <i>25</i>	7/2 ⁺ ,9/2 ⁺ 9/2 ⁻ ,11/2 ⁻	J M A E	J^{π} : L(d,t)=4.						
2218.5 25 2220.9 15 2232.2 15 2200.5 25	- (17/2 ⁻) (15/2)	E J L L	J^{π} : L(d,t)=3. J^{π} : excit; γ to 15/2 ⁻ is ΔJ =(1), M1+E2. J^{π} : γ to 15/2 ⁻ is ΔJ =0, (D+Q).						
2299.3 23 2318.5 21 2340.27 25	1/2,3/2	E i B E i M	J^{π} : L(p,d)=2 for E=2330 <i>10</i> . J^{π} : log <i>ft</i> =6.3, log $f^{lu}t$ =7.2 from $1/2^{-}$. J^{π} =3/2 ⁺ if level is identical to L(p,d)=2 level observed at 2330 keV <i>10</i> .						
2409.5 15 2436 10 2441.1 15 2482 3 2517 3 2531 12 2594 5 12	$(17/2^{+})$ $1/2^{-},3/2^{-}$ $(13/2)$ $1/2^{+}$ $7/2^{+},9/2^{+}$ $1/2^{-},3/2^{-}$ $1/2^{-},3/2^{-}$	L IM J J I	J^{π} : γ to $(13/2^+)$ is $\Delta J=2$, E2; no γ to $J<13/2$. J^{π} : L(p,d)=1. J^{π} : γ to $(13/2^+)$ is $\Delta J=(0)$, D+Q. J^{π} : L(d,t)=0. J^{π} : L(d,t)=4. J^{π} : L(p,d)=1. J^{π} : L(p,d)=1.						
2641.23 <i>14</i> 2686.94 <i>23</i> 2705 2 [†] °	$(3/2)^{-}$ $(3/2)^{-}$ $(22/2^{-})$	B I M B i	J^{π} : log ft=5.1 from 1/2 ⁻ ; γ to 5/2 ⁺ . J^{π} : log ft=5.8 from 1/2 ⁻ ; γ to 5/2 ⁺ . I^{π} : 845.0 α to 10/2 ⁻ .						
2705.51 8 2729.9 3 2785.77 24 2797 15	$(25/2)^{-}$ $(3/2)^{-}$ $1/2^{-},3/2^{-}$ $3/2^{+},5/2^{+}$	B i B M I	J^{π} : log <i>ft</i> =5.7 from 1/2 ⁻ ; γ to 5/2 ⁺ . J^{π} : log <i>ft</i> =5.6 from 1/2 ⁻ . J^{π} : L(p,d)=2.						
2851.6 3	3/2-	B M	J^{π} : log ft=5.2 from 1/2 ⁻ , γ to 5/2 ⁺ .						

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

⁹⁹Mo Levels (continued)

E(level) [‡]	J ^{π#}	T _{1/2}		XREF		Comments
2870 15	1/2-,3/2-			I		J^{π} : L(p,d)=1.
2925 15	$1/2^{-}, 3/2^{-}$			I	М	J^{π} : L(p,d)=1.
2944.0 6	1/2,3/2		В			J^{π} : log ft=6.2, log f ^{1u} t=6.8 from 1/2 ⁻ .
2990 15	$(1/2^{-}, 3/2^{-})$			I		J^{π} : L(p,d)=(1).
3010.2 8	$(27/2^{-})$	8 ns 2			NO	$T_{1/2}$: from 2007Jo13, $\gamma\gamma(t)$.
						Configuration= $vh_{11/2} \otimes \pi g_{9/2}^2$.
3066 15	$3/2^+, 5/2^+$			I		~1-
3130 15	$(7/2^+, 9/2^+)$			I		
3214 20	7/2+,9/2+			I		
3260 20	(1/2= 2/2=)			1		
3305 20	(1/2, 3/2)			1		
3338 20	1/2, $3/2(1/2^{-} 2/2^{-})$			1 T		
3783 20	(1/2, 3/2) $7/2^+ 0/2^+$			1 T		
3623 25	$(1/2^{-} 3/2^{-})$			Ť		
3666 20	$7/2^+ 9/2^+$			Ť		
3685 3 13	$(27/2^{-})$			-	MNO	I ^T . From hand assignment
3707 25	(21/2)			т	IIIIO	J . I tom band assignment.
3753 20	$1/2^{-}.3/2^{-}$			Ť		
3817 20	$7/2^+.9/2^+$			ī		
3918 25	.,_ ,,,_			I		
4002 25	$1/2^{-}, 3/2^{-}$			I		
4062 25	$1/2^{-}, 3/2^{-}$			I		
4140 25	$1/2^{-}, 3/2^{-}$			I		
4179 25	1/2-,3/2-			I		
4241 25	$1/2^{-}, 3/2^{-}$			I		
4749.3 16	$(31/2^{-})$				MNO	J^{π} : From band assignment.
5795.5 [†] 25	(35/2 ⁻)				N	J^{π} : From band assignment.
6896† <i>3</i>	(39/2 ⁻)				N	J^{π} : From band assignment.
8118 [†] 3	$(43/2^{-})$				Ν	J^{π} : From band assignment.

[†] Band(A): Decoupled band built on $h_{11/2}$.

[±] Level energies with $\Delta E < 1$ keV have been deduced by evaluators from least-squares fit to γ -ray energies. Levels with 1 keV $<\Delta E < 3$ keV are from primary γ rays in (n, γ). Other level energies are from (t,p), (d,p), (p,d), (d,t).

[#] J^{π} assignments are based on rotational structure and γ -ray decay patterns. Arguments for additional levels are based on radioactive decay and nuclear reaction quantities such as log ft's, γ -ray multipolarities, reaction cross sections and angular momentum transfer. Above 3000 keV, J^{π} values are from L(p,d).

						Adopted	Levels, G	ammas (contin	ued)
							$\gamma(9)$	⁹ Mo)	
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult. [†]	$\delta^{\dagger d}$	α^{c}	Comments
97.785	5/2+	97.785 ^{<i>a</i>} 3	100 ^{<i>a</i>}	0.0	1/2+	E2		1.308	B(E2)(W.u.)=0.0650 <i>10</i> α (K)=1.056 <i>15</i> ; α (L)=0.209 <i>3</i> ; α (M)=0.0379 <i>6</i> α (N)=0.00533 <i>8</i> ; α (O)=0.0001503 <i>21</i>
235.508	7/2+	137.723 ^{<i>a</i>} 7	100 ^{<i>a</i>}	97.785	5/2+	(M1)		0.1040	E _γ : From curved-crystal measurement (1979Bo26). B(M1)(W.u.)=0.0088 <i>16</i> α (K)=0.0910 <i>13</i> ; α (L)=0.01072 <i>15</i> ; α (M)=0.00192 <i>3</i> α (N)=0.000292 <i>4</i> ; α (O)=1.619×10 ⁻⁵ <i>23</i> E _γ : From curved-crystal measurement (1979Bo26)
351.22	3/2+	253.5 ^a 1	100 ^{<i>a</i>} 6	97.785	5/2+	(M1)		0.0207	Mult.: D from $\gamma(\theta)$; $\Delta\pi$ =no from level scheme. $\alpha(K)=0.0182$ 3; $\alpha(L)=0.00210$ 3; $\alpha(M)=0.000376$ 6 $\alpha(N)=5.71\times10^{-5}$ 8; $\alpha(O)=3.21\times10^{-6}$ 5 B(M1)(W n)=0.0033 25
		351.2 ^{<i>a</i>} 1	75 ^a 5	0.0	1/2+	M1(+E2)	0.2 2	0.0093 6	$\alpha(M) = 0.00825; \alpha(L) = 0.000947; \alpha(M) = 0.00016812$ $\alpha(N) = 0.55 \times 10^{-5}17; \alpha(O) = 1.43 \times 10^{-6}7$ $\alpha(M) = 0.00007$
525.193	1/2+	174.4 ^{<i>a</i>} 2	22.3 ^{<i>a</i>} 17	351.22	3/2+	M1+E2	0.8 4	0.097 27	$\alpha(\text{M})=0.003\ 23;\ \alpha(\text{L})=0.0113\ 37;\ \alpha(\text{M})=0.00204\ 67$ $\alpha(\text{N})=3.00\times10^{-4}\ 95;\ \alpha(\text{O})=1.3\times10^{-5}\ 4$
		427.401 ^{<i>a</i>} 15	52 ^a 5	97.785	5/2+	(E2)		0.00764	$ α(K)=5.00\times10^{-5} , α(C)=1.3\times10^{-4} α(K)=0.00666 10; α(L)=0.000813 12; α(M)=0.0001455 21 α(N)=2.18×10-5 3; α(O)=1.110×10-6 16 Eγ: From curved-crystal measurement (1979Bo26). Mult.: α(K)exp suggests M1+E2, but placement in level scheme requires, ΔJ=2. $
		525.4 ^{<i>a</i>} 2	100 ^{<i>a</i>} 6	0.0	$1/2^{+}$	(M1) [#]		0.00344	α (K)=0.00302 5; α (L)=0.000342 5; α (M)=6.11×10 ⁻⁵ 9 α (N)=9.31×10 ⁻⁶ 13; α (O)=5.30×10 ⁻⁷ 8
548.73	3/2+	197.5 ^{<i>a</i>} 2	14.3 ^{<i>a</i>} 12	351.22	3/2+	[M1,E2]		0.072 32	$\alpha(\mathbf{K})=0.062\ 27;\ \alpha(\mathbf{L})=0.0083\ 43;\ \alpha(\mathbf{M})=0.00149\ 77$ $\alpha(\mathbf{N})=2.2\times10^{-4}\ II;\ \alpha(\mathbf{Q})=1.00\times10^{-5}\ 39$
		450.9 ^{<i>a</i>} 1	100 ^{<i>a</i>} 6	97.785	5/2+	M1(+E2)	<0.3	0.00501 10	$\alpha(K) = 0.00440 \ 9; \ \alpha(L) = 0.000502 \ 11; \ \alpha(M) = 8.97 \times 10^{-5} \ 19$ $\alpha(N) = 1.37 \times 10^{-5} \ 3; \ \alpha(O) = 7.71 \times 10^{-7} \ 14$ B(M1)(W n) > 0.00083; B(E2)(W n) < 3.9
		548.9 ^a 2	29.1 ^{<i>a</i>} 20	0.0	1/2+	M1+E2	≈0.8	≈0.00330	$\alpha(\text{M}) \approx 0.00290; \ \alpha(\text{L}) \approx 0.000334; \ \alpha(\text{M}) \approx 5.98 \times 10^{-5}$ $\alpha(\text{N}) \approx 9.06 \times 10^{-6}; \ \alpha(\text{O}) \approx 5.00 \times 10^{-7}$ $R(\text{M}) \approx 0.00234; \ R(\text{E}2)(\text{W},\text{R}) \approx 1.1$
615.02	5/2+	263.8 ^{<i>a</i>} 1	100 ^{<i>a</i>} 8	351.22	3/2+	M1		0.0187	B(M1)(w.u.)~0.00034, B(E2)(w.u.)~1.1 $\alpha(K)=0.01640\ 23;\ \alpha(L)=0.00189\ 3;\ \alpha(M)=0.000339\ 5$ $\alpha(N)=5\ 15\times10^{-5}\ 8;\ \alpha(O)=2\ 00\times10^{-6}\ 4$
		379.6 ^{<i>a</i>} 3	24 ^{<i>a</i>} 3	235.508	7/2+	E2		0.01112	$\alpha(N)=3.15\times10^{-5}$, $\alpha(C)=2.50\times10^{-4}$ $\alpha(K)=0.00968$ 14; $\alpha(L)=0.001200$ 17; $\alpha(M)=0.000215$ 3 $\alpha(N)=3.21\times10^{-5}$ 5; $\alpha(C)=1.600\times10^{-6}$ 23
(21.50	2 /24	517.0 ^{&a} 3	16.00 12	97.785	5/2+			0.0000 53	
631.78	3/2+	280.5 ^{<i>a</i>} 2	16.0 ^{<i>a</i>} 13	351.22	3/2+	[M1,E2]		0.0232 73	$\alpha(K)=0.0201\ 62;\ \alpha(L)=0.00252\ 91;\ \alpha(M)=4.5\times10^{-4}\ 17$ $\alpha(N)=6\ 7\times10^{-5}\ 24;\ \alpha(O)=3\ 36\times10^{-6}\ 89$
		534.4 ^{<i>a</i>} 4	42 ^{<i>a</i>} 6	97.785	5/2+	(M1)		0.00330	$ α(K) = 0.00290 4; α(L) = 0.000329 5; α(M) = 5.87 \times 10^{-5} 9 $ $ α(N) = 8.95 \times 10^{-6} 13; α(O) = 5.09 \times 10^{-7} 8 $ Mult.: D from $γ(θ)$, $Δπ$ =no from level scheme.

 $^{99}_{42}\mathrm{Mo}_{57}$ -6

					A	dopted Leve	els, Gamn	nas (continued)	
						$\gamma(^{99}]$	Mo) (conti	inued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult. [†]	$\delta^{\dagger d}$	α^{c}	Comments
631.78	3/2+	631.8 ^{<i>a</i>} 2	100 ^{<i>a</i>} 6	0.0	1/2+	M1(+E2)		0.00234 11	$\alpha(K)=0.00205 \ 9; \ \alpha(L)=0.000236 \ 15; \\ \alpha(M)=4.2\times10^{-5} \ 3 \\ \alpha(N)=6.4\times10^{-6} \ 4; \ \alpha(O)=3.53\times10^{-7} \ 11 \\ \alpha; \ \text{pure M1.}$
684.10	$11/2^{-}$	448.6 ^{&} 2	100 &	235.508	$7/2^{+}$	[M2]		0.01735	B(M2)(W.u.)=0.103 8
698.09	(7/2+)	462.4 ^{&} 3	21 ^{&} 5	235.508	7/2+	[M1+E2]		0.0053 7	$\alpha(K)=0.0047\ 6;\ \alpha(L)=0.00055\ 9;\ \alpha(M)=9.8\times10^{-5}$ 16 16 10 10 10 10 10 10 10 10 10 10
		600.4 ^{&} 2	100 ^{&} 22	97.785	5/2+	[M1+E2]	-0.9 4	0.00264 8	$\alpha(N)=1.48\times10^{-5} 22; \ \alpha(O)=8.0\times10^{-7} 8$ $\alpha(K)=0.00232 7; \ \alpha(L)=0.000267 11;$ $\alpha(M)=4.78\times10^{-5} 19$ $\alpha(N)=7.2\times10^{-6} 3; \ \alpha(O)=4.00\times10^{-7} 9$
752.41	$(3/2^+, 5/2^+)$	517.0 ^a 3	100 a	235.508	$7/2^{+}$				u(11)-1.2/10 3, u(0)-1.00/10 3
754.18	7/2-	518.8 ^{&} 5	23 ^{&} 16	235.508	7/2+	[E1]		1.36×10^{-3}	$\alpha(K)=0.001194 \ 17; \ \alpha(L)=0.0001335 \ 19; \ \alpha(M)=2.38\times10^{-5} \ 4 \ \alpha(M)=2.51\times10^{-6} \ 6 \ \alpha(Q)=2.02\times10^{-7} \ 2 \ \alpha(Q)=2.$
		656.5 ^{&a} 3	100 ^{&} 40	97.785	5/2+	E1 [‡]		7.89×10^{-4}	$\alpha(\mathbf{N}) = 5.61 \times 10^{-5} \ 0; \ \alpha(\mathbf{C}) = 2.02 \times 10^{-5} \ 5$ $\alpha(\mathbf{K}) = 0.000695 \ 10; \ \alpha(\mathbf{L}) = 7.74 \times 10^{-5} \ 11; \ \alpha(\mathbf{M}) = 1.377 \times 10^{-5} \ 20$
792.93	3/2+	441.7 ^{<i>a</i>} 2	21.5 ^{<i>a</i>} 15	351.22	3/2+	M1(+E2)	<0.4	0.00531 14	$\alpha(N)=2.09\times10^{-6} 3; \ \alpha(O)=1.179\times10^{-7} 17$ $\alpha(K)=0.00467 12; \ \alpha(L)=0.000534 17;$ $\alpha(M)=9.5\times10^{-5} 3$
		694.8 ^{<i>a</i>} 3	100 ^{<i>a</i>} 6	97.785	5/2+	M1,E2		0.00184 6	$\alpha(N)=1.45\times10^{-5} 5; \ \alpha(O)=8.17\times10^{-7} 18 \\ \alpha(K)=0.00162 5; \ \alpha(L)=0.000185 8; \\ \alpha(M)=3.31\times10^{-5} 14 $
		793.0 ^{<i>a</i>} 2	99 ^a 11	0.0	1/2+	(M1,E2)		1.34×10 ⁻³ 2	$\alpha(N)=5.02\times10^{-6} \ 19; \ \alpha(O)=2.80\times10^{-7} \ 5$ $\alpha(K)=0.001179 \ 17; \ \alpha(L)=0.000134 \ 3; \ \alpha(M)=2.39\times10^{-5} \ 5$ $\alpha(N)=3.63\times10^{-6} \ 7; \ \alpha(O)=2.04\times10^{-7} \ 4$
865.87	$(7/2^+)$	250.8 <mark>&</mark> 4	10 ^{&} 5	615.02	$5/2^{+}$				
		514.7 ^{&} 3	11 ^{&} 5	351.22	$3/2^{+}$				
		631.6 ^{&} 7	3 ^{&} 2	235.508	$7/2^+$				
		768.1 ^{&} 2	100 & 19	97.785	$5/2^+$				
890.58	3/2+	365.2 ^{<i>a</i>} 3	38 ^{<i>a</i>} 3	525.193	$1/2^+$	[M1,E2]		0.0104 22	α (K)=0.0091 <i>19</i> ; α (L)=0.0011 <i>3</i> ; α (M)=0.00020 <i>5</i> α (N)=3.0×10 ⁻⁵ <i>7</i> ; α (O)=1.5×10 ⁻⁶ <i>3</i>
		539.2 ^a 4	19 ^a 3	351.22	3/2+				
		793.0 ^{<i>u</i>} 2	100 ^{<i>a</i>} 12	97.785	$5/2^+$	141 52		1.00.10-3.5	
		890.2 ^{<i>a</i>} 4	574 6	0.0	1/2+	M1,E2		1.02×10^{-3} 2	$\alpha(\mathbf{K}) = 0.000901 \ 1/; \ \alpha(\mathbf{L}) = 0.0001018 \ 15; \alpha(\mathbf{M}) = 1.82 \times 10^{-5} \ 3 \alpha(\mathbf{M}) = 2.76 \times 10^{-6} \ 4; \ \alpha(\mathbf{O}) = 1.56 \times 10^{-7} \ 4; \ \alpha(\mathbf{M}) $
905.43	$1/2^{+}$	553.7 ^b 3	57 ^b 8	351.22	3/2+				$a_{(17)-2.70\times10} = 4, a_{(0)-1.30\times10} = 4$

 \neg

From ENSDF

⁹⁹₄₂Mo₅₇-7

⁹⁹₄₂Mo₅₇-7

					A	dopted Leve	els, Gammas (co	ontinued)	
						$\gamma(^{99}]$	Mo) (continued)		
E _i (level)	\mathbf{J}_i^π	E_{γ}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult. [†]	$\delta^{\dagger d}$	α^{c}	Comments
905.43	1/2+	807.8 ^b 2	100 ^b 15	97.785	5/2+	E2		1.28×10^{-3}	α (K)=0.001128 <i>16</i> ; α (L)=0.0001296 <i>19</i> ; α (M)=2.31×10 ⁻⁵ <i>4</i>
		905.6 ^b 5	43 ^b 15	0.0	1/2+	(M1) [#]		9.96×10 ⁻⁴	$\alpha(N)=3.51\times10^{-6} 5; \ \alpha(O)=1.93\times10^{-7} 3$ $\alpha(K)=0.000878 \ 13; \ \alpha(L)=9.80\times10^{-5} \ 14;$ $\alpha(M)=1.749\times10^{-5} \ 25$ $\alpha(N)=2.67\times10^{-6} \ 4; \ \alpha(O)=1.532\times10^{-7} \ 22$
905.99	(9/2)+	208.0 ^{&} 4	12 ^{&} 5	698.09	$(7/2^+)$	M1+E2	-0.8 +4-6	0.055 14	$\alpha(K) = 0.047 \ 12; \ \alpha(L) = 0.0062 \ 19; \ \alpha(M) = 0.00111 \ 34 \ \alpha(N) = 1.64 \times 10^{-4} \ 48; \ \alpha(O) = 7.8 \times 10^{-6} \ 17$
		671.3 ^{&} 8	12 ^{&} 5	235.508	7/2+	M1+E2	+1.1 +11-5	0.00201 5	$\alpha(K) = 0.00177 \ 4; \ \alpha(L) = 0.000203 \ 6; \alpha(M) = 3.62 \times 10^{-5} \ 11 \alpha(N) = 5.50 \times 10^{-6} \ 16; \ \alpha(O) = 3.05 \times 10^{-7} \ 5$
		808.4 ^{&} 3	1.0×10 ² <i>&</i> 4	97.785	5/2+	E2		1.28×10^{-3}	$\alpha(K) = 0.001126 \ 16; \ \alpha(L) = 0.0001294 \ 19; \\ \alpha(M) = 2.31 \times 10^{-5} \ 4 \\ \alpha(M) = 2.50 \times 10^{-6} \ 5; \ \alpha(Q) = 1.02 \times 10^{-7} \ 2 \\ \alpha(M) = 2.50 \times 10^{-6} \ 5; \ \alpha(Q) = 1.02 \times 10^{-7} \ 2 \\ \alpha(M) = 2.50 \times 10^{-6} \ 5; \ \alpha(Q) = 1.02 \times 10^{-7} \ 2 \\ \alpha(M) = 2.50 \times 10^{-6} \ 5; \ \alpha(Q) = 1.02 \times 10^{-7} \ 2 \\ \alpha(M) = 2.50 \times 10^{-6} \ 5; \ \alpha(Q) = 1.02 \times 10^{-7} \ 2 \\ \alpha(M) = 2.50 \times 10^{-6} \ 5; \ \alpha(Q) = 1.02 \times 10^{-7} \ 2 \\ \alpha(M) = 2.50 \times 10^{-6} \ 5; \ \alpha(Q) = 1.02 \times 10^{-7} \ 2 \\ \alpha(M) = 2.50 \times 10^{-6} \ 5; \ \alpha(Q) = 1.02 \times 10^{-7} \ 2 \\ \alpha(M) = 2.50 \times 10^{-6} \ 5; \ \alpha(Q) = 1.02 \times 10^{-7} \ 2 \\ \alpha(M) = 2.50 \times 10^{-6} \ 5; \ \alpha(Q) = 1.02 \times 10^{-7} \ 2 \\ \alpha(M) = 2.50 \times 10^{-6} \ 5; \ \alpha(Q) = 1.02 \times 10^{-7} \ 2 \\ \alpha(M) = 2.50 \times 10^{-6} \ 5; \ \alpha(Q) = 1.02 \times 10^{-7} \ 2 \\ \alpha(M) = 2.50 \times 10^{-6} \ 5; \ \alpha(Q) = 1.02 \times 10^{-7} \ 2 \\ \alpha(M) = 2.50 \times 10^{-6} \ 5; \ \alpha(Q) = 1.02 \times 10^{-7} \ 2 \\ \alpha(M) = 2.50 \times 10^{-7} \ 4 \ 10^{-7}$
944.61	5/2+	395.5 ^b 4	82 ^b 12	548.73	3/2+	M1		0.00679	$\alpha(N) = 5.50 \times 10^{-5} \text{ , } \alpha(O) = 1.92 \times 10^{-5} \text{ s}$ $\alpha(K) = 0.00597 \text{ 9; } \alpha(L) = 0.000681 \text{ 10;}$ $\alpha(M) = 0.0001218 \text{ 18}$ $\alpha(N) = 1.95 \times 10^{-5} \text{ s} \text{ c} (O) = 1.050 \times 10^{-6} \text{ J} \text{ s}$
		593.2 ^b 4	47 ^b 12	351.22	3/2+	M1		0.00259	$\alpha(N)=1.85\times10^{-5} ; \alpha(O)=1.050\times10^{-7} IS$ $\alpha(K)=0.00228 4; \alpha(L)=0.000257 4;$ $\alpha(M)=4.59\times10^{-5} 7$ $\alpha(N)=6.00\times10^{-6} IS; \alpha(O)=3.00\times10^{-7} 6$
		846.8 ^b 2	100 ^b 24	97.785	5/2+	M1,E2		1.15×10 ⁻³ 2	Mult.: M1 or E2 from $\alpha(K)$ =0.001145 <i>I</i> 8; $\alpha(K)$ =0.001011 <i>I</i> 6; $\alpha(L)$ =0.0001145 <i>I</i> 8; $\alpha(M)$ =2.04×10 ⁻⁵ <i>4</i> $\alpha(N)$ =3.11×10 ⁻⁶ 5; $\alpha(O)$ =1.75×10 ⁻⁷ <i>4</i>
1025.68	(5/2+)	944.7 ^b 4 271.6 ^a 3 393.9 ^a 3 500.2 ^a 3	$\begin{array}{c} 41^{b} \ 12 \\ 15.1^{a} \ 14 \\ 15.1^{a} \ 20 \\ 30^{a} \ 4 \end{array}$	0.0 754.18 631.78 525.193	1/2 ⁺ 7/2 ⁻ 3/2 ⁺ 1/2 ⁺	(M1,E2)		0.0043 5	$\alpha(K)=0.0038$ 4; $\alpha(L)=0.00044$ 6; $\alpha(M)=7.9\times10^{-5}$ 10
		674.5 ^a 3	80 ^a 4	351.22	3/2+				$\alpha(N)=1.19\times10^{-5}$ 15; $\alpha(O)=6.5\times10^{-5}$ 5
		927.8 ^{<i>a</i>} 3	100 ^{<i>u</i>} 6	97.785	5/2+	(M1,E2)		9.32×10 ⁻⁴ 19	$\alpha(K)=0.000820 \ 17; \ \alpha(L)=9.25\times10^{-5} \ 14; \ \alpha(M)=1.650\times10^{-5} \ 25$
		1025.4 ^{<i>a</i>} 3	43 ^{<i>a</i>} 3	0.0	1/2+	(M1,E2)		7.45×10 ⁻⁴ 19	$\alpha(N)=2.51\times10^{-6} 4; \ \alpha(O)=1.42\times10^{-7} 4$ $\alpha(K)=0.000656 \ 17; \ \alpha(L)=7.37\times10^{-5} \ 15;$ $\alpha(M)=1.31\times10^{-5} \ 3$ $\alpha(N)=2.00\times10^{-6} 5; \ \alpha(O)=1.14\times10^{-7} 4$
1048.03	7/2+	432.8 ^{&} 3	67 ^{&} 17	615.02	5/2+	M1+E2	-1.4 +4-6	0.0067 4	$\alpha(K)=2.00\times10^{-5}$; $\alpha(C)=1.14\times10^{-4}$ $\alpha(K)=0.0059$ 3; $\alpha(L)=0.00070$ 4; $\alpha(M)=0.000126$ 7 $\alpha(N)=1.89\times10^{-5}$ 11; $\alpha(O)=9.9\times10^{-7}$ 4

 ∞

⁹⁹₄₂Mo₅₇-8

	ontinued)	ls, Gammas (c	lopted Leve	A					
)	Io) (continued)	γ ⁽⁹⁹ N						
Comments	α ^C	$\delta^{\dagger d}$	Mult. [†]	\mathbf{J}_{f}^{π}	E_f	I_{γ}	Eγ	\mathbf{J}_i^{π}	E _i (level)
$\alpha(K)=0.001643\ 24;\ \alpha(L)=0.000191\ 3;$ $\alpha(M)=3.41\times10^{-5}\ 5$ $\alpha(N)=5\ 16\times10^{-6}\ 8;\ \alpha(Q)=2\ 80\times10^{-7}\ 4$	0.00187		E2	3/2 ⁺ 3/2 ⁺	548.73 351.22	25 ^{&} 9 100 ^{&} 25	499.3 ^{&} 3 696.9 ^{&} 4	7/2+	1048.03
$u(1)=5.10\times10$ 8, $u(0)=2.80\times10$ 7				7/2+	235.508	67 ^{&} 17	812.9 ^{&} 3		
$\alpha(K)=0.0209\ 65;\ \alpha(L)=0.00262\ 96;$ $\alpha(M)=4.7\times10^{-4}\ 18$ $\alpha(K)=7.0\times10^{-5}\ 25;\ \alpha(C)=2.40\times10^{-6}\ 0.4$	0.0241 76		[M1+E2]	(7/2 ⁺)	865.87	3.6 ^{&} 15	277.1 ^{&} 2	(7/2 ⁺)	1142.81
$\alpha(N) = 7.0 \times 10^{-2} 23; \ \alpha(O) = 3.49 \times 10^{-2} 94$				$11/2^{-}$	684.10	2.2 <mark>&</mark> 8	459.4 <mark>&e</mark> 7		
				$5/2^+$	615.02	$5.8^{\&}$ 15	527.9 ^{&} 3		
				7/2+	235.508	100 ^{&} 16	907.2 ^{&} 2		
				5/2+	97.785	28 ^{&} 12	1044.8 <mark>&</mark> 5		
$\alpha(K)=0.00464\ 7;\ \alpha(L)=0.000559\ 8;$ $\alpha(M)=9.99\times10^{-5}\ 14$	0.00532		E2	11/2-	684.10	100 [@]	481.3 [@]	(15/2)-	1165.4
$\alpha(N)=1.500\times10^{-5}\ 21;\ \alpha(O)=7.79\times10^{-7}\ 11$				2/2+	(21.70	250 15		5/0+	11(7.42
				$\frac{3}{2}^{+}$	031.78 97.785	25^{a} 15 100^{a} 8	535.5^{a} 0 1069 5 ^a 3	5/2	1167.43
				$1/2^+$	0.0	$25^{b} 6$	$1166.1^{b} 4$		
				$(7/2^+)$	698.09	100@	497.5 [@]		1195.6
				1/2+	525.193	78 ^a 18	672.3 ^a 5	3/2+	1197.69
				$5/2^+$	97.785	100 ^{<i>a</i>} 13	1100.0^{a} 3		
				$1/2^{+}$	0.0	1/4 13	1197.6^{a} 5	5/0+	1054.0
				3/2 ·	351.22	100	903.0° 3	5/2	1254.2
				5/2* 7/2+	015.02	100@	$1044.0^{@}5$		12/2.5
				$5/2^+$	615.02	100^{a} 12	668.0^{a} 4		1280.4
				$7/2^+$	235.508	56 ^a 23	1047.0 ^{<i>a</i>} 8		
$\alpha(K)$ =0.0071 4; $\alpha(L)$ =0.00086 6; $\alpha(M)$ =0.0001	0.0081 5	-1.6 +5-9	M1+E2	(9/2)+	905.99	14 ^{&} 6	408.1 ^{&} 3	(11/2)+	1314.03
$\alpha(N)=2.30\times10^{-5}$ 15; $\alpha(O)=1.19\times10^{-6}$ 6						0	0		
$\alpha(K)=0.000573 \ 8; \ \alpha(L)=6.47\times10^{-5} \ 9; \\ \alpha(M)=1.155\times10^{-5} \ 17 \\ \alpha(N)=1.755\times10^{-6} \ 25; \ \alpha(O)=9 \ 84\times10^{-8} \ 14$	6.52×10 ⁻⁴		E2	7/2+	235.508	100 ^{&} 20	1078.4 ^{&} 3		
				$7/2^{+}$	1048.03	3.3 ^{&} 14	294.3 ^{&} 6	$(7/2)^+$	1342.76
				, 5/2+	615.02	8 ^{&} 3	727.7 ^{&} 3	~ / /	
			(D+Q)	, 7/2+	235.508	100 ^{&} 20	1107.4 ^{&} 2		

From ENSDF

⁹⁹₄₂Mo₅₇-9

					Adopted	Levels, Ga	mmas (continue	d)	
						γ(⁹⁹ Mo) (c	ontinued)		
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f	J_f^π	Mult. [†]	$\delta^{\dagger d}$	α^{c}	Comments
1354.3		600.2 ^{<i>a</i>} 3	100 ^a	754.18	7/2-				
1367.6		613.4 [@]	100@	754.18	7/2-				
1382.6	$3/2^+, 5/2^+$	767.8^{a} 5	100^{a} 13	615.02	$5/2^+$				
1401 21	$(7/2^{+})$	1140.9^{4} 4	$4/^{-15}$	235.508	7/2*				
1401.31	(7/2)	1304.4% 6	100 10	255.506	7/2 5/2+				
1404 8	(17/2)	$239.4^{@}$	100 [@]	1165.4	$(15/2)^{-}$	D			
1442.1	$(3/2,5/2)^+$	1090.9^a 5	100 ^a	351.22	$3/2^+$	D			
1449.5	3/2+,5/2+	834.5 [@]	100@	615.02	5/2+				
1464.5	(9/2)+	765.7 ^{&} 5	7.0×10 ¹ & 3	698.09	(7/2 ⁺)	M1+E2	-2.6 +4-5	1.47×10^{-3}	α (K)=0.001287 <i>19</i> ; α (L)=0.0001480 <i>21</i> ; α (M)=2.64×10 ⁻⁵ <i>4</i> α (N)=4.00×10 ⁻⁶ <i>6</i> ; α (O)=2.20×10 ⁻⁷ <i>4</i>
		780.1 ^{&} 9	29 14	684.10	11/2-	[E1]		5.44×10 ⁻⁴	$\alpha(K)=0.000480\ 7;\ \alpha(L)=5.32\times10^{-5}\ 8;\ \alpha(M)=9.48\times10^{-6}\ 14$
		1228.9 ^{&} 4	100 ^{&} 7	235.508	7/2+	M1+E2	-4.0 +10-17	5.04×10 ⁻⁴ 8	$\alpha(K) = 0.000433 \ 7; \ \alpha(L) = 4.86 \times 10^{-5} \ 7; \alpha(M) = 8.67 \times 10^{-6} \ 13 \alpha(N) = 1.319 \times 10^{-6} \ 19; \ \alpha(O) = 7.46 \times 10^{-8} \ 11; \alpha(IPF) = 1.200 \times 10^{-5} \ 21$
		1366.4 <mark>&</mark> 7	90 60	97.785	5/2+				
1471.7	(11/2)+	565.8 [@]		905.99	(9/2)+	M1+E2	-1.0 5	0.00310 14	α (K)=0.00272 <i>12</i> ; α (L)=0.000315 <i>18</i> ; α (M)=5.6×10 ⁻⁵ <i>4</i> α (N)=8.5×10 ⁻⁶ <i>5</i> ; α (O)=4.68×10 ⁻⁷ <i>15</i>
		773.5 [@]		698.09	$(7/2^+)$				
1493.50	5/2+	1258.1 ^a 3 1395.5 ^a 4	$100^{a} 11$ $11^{a} 4$	235.508 97.785	7/2+ 5/2+				
1536.5		782.3 [@]	100 [@]	754.18	7/2-				
1560.59	$1/2, 3/2, 5/2^+$ $1/2, 3/2, 5/2^+$	534.4^{a} 4 1220 1 ^a 4	100^{a}	1025.68	$(5/2^+)$ $3/2^+$				
1639 37	$9/2^{-}$	733 3 9	11 ^{&} 6	905 99	$(9/2)^+$				
1009.07	7/2	773.6 ^{&} 3	$20^{\&} 6$	865.87	$(7/2^+)$				
		1403.7 ^{&} 4	100 & 20	235.508	7/2+				
1675.5		921.3 [@]	100 [@]	754.18	7/2-				
1679.5	(13/2 ⁺)	773.5 [@]	100 [@]	905.99	(9/2)+	E2		1.43×10^{-3}	$\alpha(\mathbf{K})=0.001257 \ 18; \ \alpha(\mathbf{L})=0.0001449 \ 21; \ \alpha(\mathbf{M})=2.59\times10^{-5} \ 4 \ \alpha(\mathbf{M})=3.02\times10^{-6} \ 6; \ \alpha(\mathbf{C})=2.15\times10^{-7} \ 3$
1682.2	$(3/2^+, 5/2^+)$	1446.7 ^a 4	100 ^a	235.508	7/2+				$a(10) - 5.52 \times 10 = 0, a(0) = 2.15 \times 10 = 5$
1813.4		671.0 ^{&} 4	27 ^{&} 14	1142.81	$(7/2^+)$				

				-	Adopted Leve	els, Gamn	as (continu	ied)
					$\gamma(^{99})$	Mo) (conti	nued)	
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f	J_f^π	Mult. [†]	α^{C}	Comments
1813.4		1577.5 ^{&} 4	$1.0 \times 10^2 $ $\&$ 3	235.508	7/2+			
1857.91	$(9/2, 11/2)^+$	515.4 <mark>&</mark> 3	2.0 ^{&} 8	1342.76	$(7/2)^+$			
		715.2 ^{&} 3	4.4 ^{&} 12	1142.81	$(7/2^+)$			
		991.9 <mark>&</mark> 3	9.2 ^{&} 24	865.87	$(7/2^+)$			
		1173.7 <mark>&</mark> 6	1.6 ^{&} 8	684.10	$11/2^{-}$			
		1622.2 ^{&} 3	100 & 16	235.508	7/2+			
1858.0	(19/2 ⁻)	692.6 [@]	100@	1165.4	$(15/2)^{-}$	E2	0.00190	α (K)=0.001670 24; α (L)=0.000194 3; α (M)=3.47×10 ⁻⁵ 5 α (N)=5.24×10 ⁻⁶ 8; α (O)=2.84×10 ⁻⁷ 4
1884.9	$(15/2^{-})$	719.5 [@]	100@	1165.4	$(15/2)^{-}$			
1893.39	$(3/2^{-})$	948.4 ^a 5	81 ^{<i>a</i>} 6	944.61	5/2+			
		988.0 ^a 4	61 ^{<i>a</i>} 8	905.43	1/2+			
		1002.8 ^{<i>a</i>} 4	$52^{a} 8$	890.58	$3/2^+$			
		1140.9^{a} 4	19 ⁴ 8	/52.41 548 73	$(3/2^+, 5/2^+)$ $3/2^+$			
		$1345.1 \ 5$ 1367 8 ^{<i>a</i>} 4	48^{a} 6	525 193	$\frac{3}{2}$			
		1542.2^a 3	$100^{a} 10$	351.22	$3/2^+$			
		1893.9 ^a 5	59 ^a 8	0.0	1/2+			
1987.4		586.5 <mark>&</mark> 6	6.0×10 ¹ & 3	1401.31	$(7/2^+)$			
		673.2 <mark>&</mark> 6	43 ^{&} 14	1314.03	$(11/2)^+$			
		844.4 ^{&} 5	6.0×10 ¹ & 3	1142.81	$(7/2^+)$			
		1303.7 <mark>&</mark> 9	$4.0 \times 10^{1} $ $\&$ 3	684.10	$11/2^{-}$			
		1751.8 <mark>&</mark> 6	1.0×10 ² <i>&</i> 5	235.508	7/2+			
2059.68		657.9 <mark>&</mark> 6	15 ^{&} 5	1401.31	$(7/2^+)$			
		716.8 <mark>&</mark> 4	25 ^{&} 10	1342.76	$(7/2)^+$			
		1012.2 <mark>&</mark> 4	7.0×10 ¹ & 3	1048.03	7/2+			
		1193.7 <mark>&</mark> 7	25 ^{&} 10	865.87	$(7/2^+)$			
		1823.7 <mark>&</mark> 6	100 ^{&} 20	235.508	7/2+			
2134.46	3/2-	780.3 ^a 5	11 ^{<i>a</i>} 3	1354.3				
		1108.5 ^{<i>a</i>} 3	19.5 ^{<i>a</i>} 12	1025.68	$(5/2^+)$			
		1228.9 ^{<i>a</i>} 3	17.84 18	905.43	$1/2^+$			
		$1382.3^{\circ\circ} 4$ 1783.6 ^{<i>a</i>} 9	11.2^{a} 18 20^{a} 1	752.41	$(3/2^{+}, 5/2^{+})$ $3/2^{+}$			
		2134.7^{a} 4	100^{a} 7	0.0	$1/2^+$			
2174.67	9/211/2-	316.8 ^{&} 5	33 ^{&} 12	1857.91	$(9/2,11/2)^+$			
_1, 110,	>/ - ,11/ -	$773.0^{\&} 4$	67 ^{&} 23	1401.31	$(7/2^+)$			
		1031.7 & 4	$9.0 \times 10^{1} \frac{\&}{4}$	1142.81	$(7/2^+)$			
		1269 5 ^{&} 5	$9.0 \times 10^{1} & 4$	905 99	$(9/2)^+$			
		1207.0 0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	/00.//	(-/=)			

⁹⁹₄₂Mo₅₇-11

L

From ENSDF

 $^{99}_{42}\mathrm{Mo}_{57}$ -11

					Adopted Levels, Gammas (continued)				
					$\gamma(99)$	γ ⁽⁹⁹ Mo) (continued)			
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	\mathbf{E}_{f}	J_f^π	Mult. [†]	$\delta^{\dagger d}$	α^{c}	Comments
2174.67	9/211/2-	1939.0 ^{&} 7	$1.0 \times 10^{2} $ %	235.508	7/2+				
2220.9	(17/2 ⁻)	1055.5 [@]	100@	1165.4	(15/2)-	M1+E2	+3.1 +20-11	6.86×10 ⁻⁴ 11	$\begin{aligned} &\alpha(\mathrm{K}) = 0.000604 \ 9; \ \alpha(\mathrm{L}) = 6.82 \times 10^{-5} \ 10; \\ &\alpha(\mathrm{M}) = 1.217 \times 10^{-5} \ 18 \\ &\alpha(\mathrm{N}) = 1.85 \times 10^{-6} \ 3; \ \alpha(\mathrm{O}) = 1.039 \times 10^{-7} \ 17 \end{aligned}$
2232.2 2340.27	(15/2) 1/2,3/2	1066.8 [@] 1314.6 ^a 3 1708.2 ^a 4 2340.9 ^a 7	$ \begin{array}{r}100^{@}\\100^{a} \ 10\\31^{a} \ 11\\76^{a} \ 19\end{array} $	1165.4 1025.68 631.78 0.0	$(15/2)^{-}$ $(5/2^{+})$ $3/2^{+}$ $1/2^{+}$	D+Q			
2409.5	(17/2 ⁺)	730.0 [@]	100 [@]	1679.5	(13/2 ⁺)	E2		1.66×10 ⁻³	α (K)=0.001456 21; α (L)=0.0001686 24; α (M)=3.01×10 ⁻⁵ 5 α (N)=4.56×10 ⁻⁶ 7; α (O)=2.48×10 ⁻⁷ 4
2441.1	(13/2)	761.6 [@]	100 [@]	1679.5	$(13/2^+)$	(D+Q)			
2641.23	$(3/2)^{-}$	1080.6 ^a 3	7.5 ^a 6	1560.59	1/2,3/2,5/2+				
		1473.6 ^a 3	12.5 ^a 9	1167.43	5/2+				
		1696.4 ^{<i>a</i>} 3	$21.1^{a} 20$	944.61	5/2+				
		1735.8 ^{<i>a</i>} 4	15.2^{a} 15	905.43	$1/2^+$				
		1848.1° 4	$3.6^{\circ} 0$	/92.93	$3/2^+$				
		2009.0^{-4}	15.6^{-11}	615.02	5/2+				
		$2020.5 \ 5$ $2092 \ 7^{a} \ 5$	$55^{a}6$	548 73	$3/2^+$				
		2290.2^{a} 6	3.4^{a} 11	351.22	$3/2^+$				
		2543.7 ^{<i>a</i>} 5	21.1 ^{<i>a</i>} 16	97.785	5/2+				
		2641.3 ^a 5	100 ^{<i>a</i>} 8	0.0	$1/2^+$				
2686.94	$(3/2)^{-}$	1126.1 ^{<i>a</i>} 3	32 ^{<i>a</i>} 4	1560.59	1/2,3/2,5/2+				
		1893.9 ^{<i>a</i>} 5	15 ^a 5	792.93	3/2+				
		2055.5 ^{<i>a</i>} 5	27^{a} 4	631.78	3/2+				
		2336.1° 9	24^{4} 5	351.22	3/2 ⁺				
		2589.8^{-9}	18^{-7} / 100^{a} 9	97.785	$\frac{3}{2^+}$				
2705.3	$(23/2^{-})$	2007.0 J	100 9	1858.0	$(10/2^{-})$				
2705.5	$(23/2)^{-}$	2098.2^{a}	49^{a} 5	631.78	(19/2)				
2129.9	(3/2)	2377.9^{a} 9	25^{a} 5	351.22	$3/2^+$				
		2632.0 ^{<i>a</i>} 6	$17^{a} 5$	97.785	$5/2^+$				
		2729.9 <mark>a</mark> 5	100 ^a 15	0.0	1/2+				
2785.77	1/2-,3/2-	1992.7 ^a 4	90 ^a 8	792.93	3/2+				
		2237.1 ^a 4	100 ^{<i>a</i>} 10	548.73	3/2+				
		2434.8 ^{<i>a</i>} 6	$10^{a} 3$	351.22	3/2+				
2051 (2/2-	2785.64 5	75 ^u 11	0.0	$1/2^{+}$				
2851.6	3/2	2302.64 6	2.4" 11	548.73	3/21				

					Adopted Levels, Gammas (continued)							
					ntinued)							
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f	J_f^π	E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	$E_f \qquad J_f^{\pi}$		
2851.6	3/2-	2326.2 ^a 5	7.1 ^a 9	525.193	$1/2^{+}$	3685.3	$(27/2^{-})$	980 [@] 1	100 [@]	2705.3 (23/2-)		
		2500.8 ^a 6	1.5 ^a 7	351.22	$3/2^{+}$	4749.3	$(31/2^{-})$	1064 [@] 1	@	3685.3 (27/2-)		
		2753.6 ^a 9	1.5 <mark>a</mark> 7	97.785	5/2+			1739 ^{@e} 1	@	3010.2 (27/2-)		
		2851.5 ^a 5	100 ^a 7	0.0	$1/2^{+}$	5795.5	$(35/2^{-})$	1049 [@] 1	$100^{@}$	4749.3 (31/2 ⁻)		
2944.0	1/2,3/2	1660.9 ^a 6	31 ^{<i>a</i>} 18	1283.0		6896	(39/2-)	1100 [@] 1	100 [@]	5795.5 (35/2-)		
		2593.0 ^a 8	100 a 21	351.22	3/2+	8118	$(43/2^{-})$	1222 [@] 1	100@	6896 (39/2-)		
3010.2	$(27/2^{-})$	304.9 <i>3</i>	100	2705.3	$(23/2^{-})$							

[†] From $\alpha(K)$ exp in (d,p γ) (1975Di15). Unsigned δ 's are from (d,p γ) for 600 γ , 534 γ , 462 γ . Most of the γ 's from levels >905 are from (α ,n γ) (1988Du02) (assuming Q=E2, D+Q with large δ is M1+E2).

[‡] D or E2 from α (K)exp in (d,p γ). D, δ =0 or D+Q, δ =-2.8 +9-20 from $\gamma(\theta)$ in (α ,n γ).

[#] Both pure M1 and E2 are within the uncertainty limits. ΔJ allows only M1.

[@] From ⁹⁶Zr(α ,n γ).

[&] From ⁹⁹Nb β^- Decay (15 s).

^{*a*} From ⁹⁹Nb β^- Decay (2.5 min).

^{*b*} From ${}^{98}Mo(d,p\gamma)$.

^c Additional information 3.

^d If No value given it was assumed δ =1.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities.

^{*e*} Placement of transition in the level scheme is uncertain.

⁹⁹₄₂Mo₅₇

Level Scheme (continued)

⁹⁹₄₂Mo₅₇

Level Scheme (continued)

⁹⁹₄₂Mo₅₇

Level Scheme (continued)

Level Scheme (continued)

Legend

Level Scheme (continued)

⁹⁹₄₂Mo₅₇

Level Scheme (continued)

⁹⁹₄₂Mo₅₇