⁹⁸Y β⁻ decay (0.548 s) 2017Ur03,1984Be50,1977Si05

	Hi	istory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen, Balraj Singh	NDS 164, 1 (2020)	15-Feb-2020

Parent: ⁹⁸Y: E=0.0; $J^{\pi}=0^{-}$; $T_{1/2}=0.548 \text{ s} 2$; $Q(\beta^{-})=8992 12$; $\%\beta^{-}$ decay=100.0

 98 Y-J^{π},T_{1/2}: From 98 Y Adopted Levels.

⁹⁸Y-Q(β^{-}): From 2017Wa10.

- 2017Ur03: ⁹⁸Y source obtained as a fission fragment and using Lohengrin separator. Measured E γ , I γ , $\beta\gamma$ -coin, $\gamma\gamma$ -coin using two clover Ge detectors for γ detection and three β detectors. The A=98 ions were deposited on a tape whose movement was correlated with the beam ON and beam OFF cycles. Deduced levels, J^{π} , multipolarities, β feedings. Angular correlation measurements were made in the study of prompt γ rays from ²³⁵U(n,F γ) and ²⁵²Cf SF decay. Polarization measurements for three γ -ray cascades were also made in ²³⁵U(n,F γ). See these two datasets for data from Table IX in 2017Ur03.
- 1984Be50: measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma\gamma(\theta)$ using OSTIS separator at Grenoble. Only a decay scheme is given, with no uncertainties for E γ and I γ values. No β feedings were deduced in this work.
- 1977Si05: measured E γ , I γ , $\gamma\gamma$ -coin, β , $\beta\gamma$ -coin, (ce) γ (t). Two independent measurements of E γ and I γ were made, one using JOSEF separator at Julich and the other LOHENGRIN at Grenoble. Separate E γ and I γ data, as well as averages of the two were reported by 1977Si05.
- 2010Be30: A=98 nuclei produced by thermal neutron-induced fission out of a 400 μ g/cm² ²³⁵U target and selected by the Lohengrin mass separator at the high-flux reactor of the Institut Laue-Langevin in Grenoble, France. Detector array of a thin plastic scintillator, a LaBr₃(Ce) scintillation detector (LaBr) and a high-purity germanium clover detector (HPGe). Measured $\beta\gamma\gamma$ -timing, lifetimes of both yrast and non-yrast states.

Others:

γ: 1987Ma58, 1979Bo26.

ce: 1975Kh05, 1982Ka03, 1983VaZJ, 1983VaZQ, 1984VeZU, 1985HaZH, 1994Lh01.

β, βγ-coin: 1988MaYY, 1983MaYZ, 1979Pe17, 1978St02.

Additional information 1.

 $\beta \gamma(t), \beta \gamma \gamma(t)$: 1989Ma38, 1982Ka03.

 $Q(\beta^-)$ data: 8840 55 (1988GrZX,1978St02), 8780 30 (1984BlZN), 8965 40 (1983MaYZ), 8963 41 (1988MaYY). T_{1/2}(⁹⁸Y): 1986Wa17, 1983Re10, 1983En03, 1982Ga24, 1971Tr02.

⁹⁸Zr Levels

Level scheme is based on the works of 1977Si05 and 1984Be50, and extended significantly by 2017Ur03. Previously proposed levels at 2047.8, 2478.9, 2796.8 and 3507.0 keV in 1984Be50, and γ rays from these levels have not been confirmed by 2017Ur03, and have been omitted here, while the γ rays are included as unplaced.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	0^{+}	30.7 s 4	$T_{1/2}$: from the Adopted Levels.
854.06 <i>6</i>	0+	64 ns 7	$T_{1/2}$: from the Adopted Levels. Measurements in this dataset: 63 ns 7 from (ce) γ (t) (1977Si05), weighted average of five values: 65 ns 15 for 269 γ , 62 ns 15 for 369 γ , 70 ns 15 for 737 γ , 63 ns 15 for 890 γ , and 54 ns 15 for 3310 γ .
1222.91 6	2+	2.63 ps 55	T _{1/2} : from the Adopted Levels. Measurements in this dataset: <11 ps ($\beta\gamma$ (t), 2010Be30), ≤21 ps ($\beta\gamma$ (t),1989Ma38), <0.2 ns ($\beta\gamma$ (t),1982Ka03).
1436.16 7	0+	0.72 ns 8	J ^{π} : $\gamma\gamma(\theta)$ (1984Be50,1982Ka03). T _{1/2} : 0.72 ns 8 from $\beta\gamma(t)$; unweighted average of 0.611 ns 33 (2010Be30), 0.865 ns 42 (1989Ma38), and 0.69 ns 10 (1982Ka03). Weighted average is 0.71 ns 9, but reduced χ^2 =11 is too large. Value is the same in the Adopted Levels.
1590.78 6	2^{+}		λ
1744.61 6	2^{+}		
1806.20 10	3-		Population of 2778.7 level requires 1806 level, although not listed in Table VII of 2017Ur03. The level was known earlier from 1984Be50.
1859.37 7	0+	0.290 ns 13	J^{π} : $\gamma\gamma(\theta)$ (1984Be50,1982Ka03). T _{1/2} : $\beta\gamma(t)$; weighted average of 0.318 ns 27 (2010Be30), 0.283 ns 15 (1989Ma38), 0.24 ns

Continued on next page (footnotes at end of table)

$^{98}{\rm Y}\,\beta^-$ decay (0.548 s) 2017Ur03,1984Be50,1977Si05 (continued)

⁹⁸Zr Levels (continued)

E(level) [†]	J ^{π‡}	Comments
		10 (1982Ka03). Same value in the Adopted Levels.
2225.15 8	(2^{+})	E(level): level proposed by 2017Ur03.
2778.71 7	(2^{+})	E(level): level proposed by 2017Ur03.
3065.61 15	(1)	
4108.67 13	(1)	E(level): level proposed by 2017Ur03.
4165.18 6	1-	
4271.11 6	1-	E(level): level proposed by 2017Ur03.
4399.07 12	1-	E(level): level proposed by 2017Ur03.
4452.58 9	1-	
4492.35 15	1-	E(level): level proposed by 2017Ur03.
6415+x		E(level): x<2577 15 from Q(β^{-})(⁹⁸ Y g.s.)-S(n)(⁹⁸ Zr), where Q(β^{-})=8992 12 for ⁹⁸ Y g.s. decay, and S(n)=6415 8.

[†] From least-squares fit to $E\gamma$ data. [‡] From the Adopted Levels.

β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger \#}$	$\log ft^{\ddagger}$	Comments
$(1.3 \times 10^3 \& 13)$	6415+x	0.33 3		$I\beta^-$: from $\%\beta^-$ n=0.33 <i>3</i> for decay of ⁹⁸ Y g.s.
(4500 12)	4492.35	2.29 24	5.3 1	av $E\beta = 1980.558$
(4539 12)	4452.58	14.2 15	4.5 1	av $E\beta = 1999.658$
				E(decay): 4430 62 from $(4450\gamma)(4430\beta)$, 4483 88 from $(3228\gamma)(\beta)$ (1988MaYY).
(4593 12)	4399.07	2.9 4	5.3 1	av E β =2025.2 58
(4721 12)	4271.11	4.0 5	5.2 1	av E β =2086.7 58
(4827 12)	4165.18	37 4	4.3 1	av E β =2137.8 58
				4810 100 from β (2941 γ)-coin (1979Pe17), 4820 45 (1988MaYY), 4854 62 (β (3310 γ)-coin (1988MaYY)).
(4883 12)	4108.67	1.04 17	5.8 1	av E β =2164.7 58
(5926 12)	3065.61	1.09 16	6.2 1	av $E\beta = 2667.058$
$(6213^{\textcircled{0}}12)$	2778.71	< 0.27	>8.9 ¹ <i>u</i>	av E β =2796.1 58
(7133 12)	1859.37	11.1 12	5.6 1	av $E\beta = 3247.158$
				 Log <i>ft</i>: value is low for 0⁻ to 0⁺ transition. For expected log <i>ft</i>>5.9 for first-forbidden transitions, Iβ≤5%, suggesting that intensities of 268.7γ and/or 636.5γ may be overestimated by few percent. 7049 46 from (268γ)(7049β)-coin (1988MaYY).
(7247 12)	1744.61	3.0 4	8.3 ¹ <i>u</i> 1	 log <i>ft</i> value is lower than expected value of >8.5 for first-forbidden unique transitions. 4648 64 from (1744x)(46488)-coin (1988MaXX)
(7401 @ 12)	1500 78	<0.3	> 0.51 u	$E_{\mu} = 2260.058$
(7401 12)	1390.78	<0.5	29.5	$4V = E_{D} = 5509.0 \text{ Jo}$
(7556, 12)	1426 16	557	601	$E_{2450.6.58}$ (0003 <i>p</i> -colli) (19881/11). Ottel. 1984 DIZIN.
$(7550\ 12)$	1430.10	5.57	0.0 1	aV E D = 5450.050 7/37 70 from (213a)(7/37B) coin (1088MaVV)
$(77(0)^{a})$	1000.01	2.2	0.414	(43) / 0 from $(213)((43)p)$ -com $(1988)(1411)$.
(7/69 12)	1222.91	<3.2	>8.41	av $E\beta = 3546.6, 58$
Ø				$(1223\gamma)(7248\beta)$ -coin (1988MaYY).
(8138 ^w 12)	854.06	< 0.5	>7.2	av E β =3730.4 58
(8992 12)	0.0	189	5.8 2	av E β =4140.5 58

[†] Deduced by evaluators from γ +ce intensity balance.

$^{98}\mathrm{Y}\,\beta^-$ decay (0.548 s) 2017Ur03,1984Be50,1977Si05 (continued)

 β^{-} radiations (continued)

[±] Deduced by evaluators using LOGFT code.
[#] Absolute intensity per 100 decays.
[@] Existence of this branch is questionable.

& Estimated for a range of levels.

⁹⁸ Y	β^{-} de	cay (0.548 s)	2017Ur03,1984B	Be50,1977Si05	(continued)
-----------------	----------------	---------------	----------------	---------------	-------------

$\gamma(^{98}\text{Zr})$

Iy normalization: From Iy(absolute)(1223 γ)=36 3 (1987Ma58) in the decay of ⁹⁸Y g.s.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger c}$	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. ^a	α^{d}	Comments
152.7 [‡] <i>e</i>	0.23 [‡]	1744.61	2+	1590.78 2+	[M1+E2]	0.15 9	$\alpha(K)=0.13 \ 8; \ \alpha(L)=0.018 \ 12; \ \alpha(M)=0.0031 \ 20$ $\alpha(N)=0.0004 \ 3; \ \alpha(O)=2.3\times10^{-5} \ 12$ $I\gamma=0.5 \ (1984Be50).$
154.5 [‡]	0.48 [‡]	1590.78	2+	1436.16 0+	[E2]	0.228	$\alpha(K)=0.194 \ 3; \ \alpha(L)=0.0281 \ 4; \ \alpha(M)=0.00490 \ 7 \ \alpha(N)=0.000661 \ 10; \ \alpha(O)=3.31\times10^{-5} \ 5 \ L_{2}=0.8 \ in \ 1984Be50$
213.2 1	14.6 5	1436.16	0+	1222.91 2+	E2	0.0714	α(K)=0.0617 9; α(L)=0.00815 12; α(M)=0.001418 20 α(N)=0.000194 3; α(O)=1.087×10-5 16 Eγ: 213.1 1 from 1994Lh01. Precise Eγ=213.948 22 (1979Bo26) from crystal spectrometer seems to be in error. Eγ=213.1 2, Iγ=12.0 20 (1977Si05). Eγ=213.1, Iγ=11.3 (1984Be50). Mult.: (213γ)(1223γ)(θ): A2=+0.36 12, A4=+1.19 19 (1984Be50), 1982Ka03.
(215.5 2) ^x 241.5	0.044 ^{&} 12	1806.20	3-	1590.78 2+	[E1]	0.01222	$\alpha(K)=0.01078 \ I6; \ \alpha(L)=0.001199 \ I7; \ \alpha(M)=0.000207 \ 3 \\ \alpha(N)=2.91\times10^{-5} \ 5; \ \alpha(O)=1.96\times10^{-6} \ 3 \\ \gamma \text{ with } I_{\gamma}=5.6 \text{ in } 1984Be50 \text{ placed from a } 2047.8 \text{ level, based on } \gamma\gamma\text{-coin, but} \\ 2048 \text{ level is populated only in the decay of } 2.32\text{-s isomer of } ^{98}Y \text{ according to} \\ 2017Ur03 \text{ and } 1977Si05 \text{ decaying by a } 2415 \\ \gamma \text{ scheme of } 98Y \text{ according to} \\ \gamma \text{ according to } 1977Si05 \text{ decaying by a } 2415 \\ \gamma \text{ scheme of } 98Y \text{ according to} \\ \gamma \text{ scheme of } 98Y $
268.7 1	22.6 7	1859.37	0+	1590.78 2+	E2	0.0316	$\begin{aligned} \alpha(\mathbf{K}) = 0.0275 \ 4; \ \alpha(\mathbf{L}) = 0.00347 \ 5; \ \alpha(\mathbf{M}) = 0.000603 \ 9 \\ \alpha(\mathbf{N}) = 8.32 \times 10^{-5} \ 12; \ \alpha(\mathbf{O}) = 4.95 \times 10^{-6} \ 7 \\ \mathbf{E}\gamma = 268.6 \ 2, \ \mathbf{I}\gamma = 18.6 \ (1984\text{Be50}). \\ \mathbf{E}\gamma = 268.6 \ 2, \ \mathbf{I}\gamma = 21.0 \ 20 \ (1977\text{Si05}). \\ (269\gamma)(154\gamma)(\theta): \ \mathbf{A}_2 = +0.50 \ 16, \ \mathbf{A}_4 = +1.1 \ 3; \ (269\gamma)(1591\gamma)(\theta): \ \mathbf{A}_2 = +0.24 \ 21, \\ \mathbf{A}_4 = +1.03 \ 21 \ (1984\text{Be50}). \ (269\gamma)(737\gamma)(\theta): \ \mathbf{A}_2 = +0.6 \ 3, \ \mathbf{A}_4 = +1.5 \ 5 \ (1982\text{Ka03}). \end{aligned}$
^x 297.3 [#]							Uncertain γ from only $\gamma\gamma$ -coin with 269 γ and 213 γ (1984Be50). This γ is not reported by 1977Si05 and 2017Ur03.
367.8 1	2.9 2	1590.78	2+	1222.91 2+	[M1+E2]		E γ =367.5, I γ =2.4 (1984Be50). E γ =367.6 2, I γ =2.0 5 (1977Si05). I $_{\gamma}$: 3.1 2 in 2017Ur03 (Table VII) is probably the total intensity from the two activities in ⁹⁸ Y. Evaluators have subtracted 0.24 <i>3</i> units to account for contribution from the 2.32-s isomer decay obtained from intensity balance at 1591 lawel in ⁹⁸ Y. θ = decay (2.32 c)
368.8 1	1.74 21	1222.91	2+	854.06 0+	[E2]	0.0109	Even in $\gamma \beta$ decay (2.32.8). Ey=368.5, Iy=1.6 (1984Be50). Ey=368.5 2, Iy=1.5 4 (1977Si05). I _y : 2.5 2 in 2017Ur03 (Table VII) is probably the total intensity from the two activities in ⁹⁸ Y. Evaluators have subtracted 0.76 7 units to account for contribution from the 2.32-s isomer decay obtained from intensity balance at 1223 level in ⁹⁸ Y β^- decay (2.32 s).

				⁹⁸	β-	decay (0.54	48 s) 201	17Ur03,198	34Be50,1977Si05 (continued)
							$\gamma(^{98})$	Zr) (continu	ued)
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_f^{π}	Mult. ^a	δ^{a}	$I_{(\gamma+ce)}^{c}$	Comments
^x 386.1 [@] 2									I γ =2.5 10 (1977Si05), contaminated by a neighboring nuclide.
423.0 2		1859.37	0+	1436.16	0+	E0 ^b		0.29 4	E_{γ} : from ce data in 1994Lh01. Other: 1982Ka03. I _(γ+ce) : from I(E0)/I(E2(269γ))=0.0130 <i>16</i> (1994Lh01) and adopted I(269γ)=22.6 7 here.
521.6 1	5.5 2	1744.61	2+	1222.91	2+	M1+E2	+0.44 4		Monopole strength (ρ)=0.237 25 (1994Lh01), 0.29 15 (1982Ka03). E γ =521.6, I γ =3.5 (1984Be50). E γ =521.6 2, I γ =6.0 5 (1977Si05). (522 γ)(123 γ)(θ): A ₂ =+0.01 16, A ₄ =-0.28 28 (1984Be50), δ (E2/M1)=+0.2 1.
$x547.5^{@}2$									I γ =2.5 10 (1977Si05), contaminated by a neighboring nuclide.
582.0 2		1436.16	0+	854.06	0+	E0 ^b		0.95 7	 E_γ: from ce data in 1994Lh01. Other: 1982Ka03. I_(γ+ce): from I(E0)/I(E2(213γ))=0.065 4 (1994Lh01) and adopted I(213γ)=14.6 5 here. Monopole strength (ρ)=0.274 15 (1994Lh01), 0.29 8 (1982Ka03).
(583.2 1)	0.66 <mark>&</mark> 10	1806.20	3-	1222.91	2^{+}	E1			
$x_{600.0}^{@} 2$									$I\gamma = 2.5 \ 10 \ (1977 \text{Si}05).$
636.5 1	4.1 2	1859.37	0+	1222.91	2+	E2			$E_{\gamma}=636.4, I_{\gamma}=3.3 (1984Be50).$ $E_{\gamma}=636.2 2, I_{\gamma}=4.0 10 (1977Si05).$ $(636_{\gamma})(1223_{\gamma})(\theta): A_{2}=+0.6 4, A_{4}=+0.9 5 (1982Ka03).$
^x 671.2 [#]									γ with I γ =0.5 in 1984Be50 placed from a 2478.9 level, but this level is not confirmed by 2017Ur03. Also $\gamma\gamma$ -coin with 213 γ in 1984Be50 remained unexplained.
^x 734.9 [#]									γ with I γ =2.5 in 1984Be50 placed from a 2478.9 level, but this level is
736.8 1	3.6 2	1590.78	2+	854.06	0^{+}	[E2]			not confirmed by 2017Ur03. $E\gamma = 736.7, I\gamma = 4.5$ (1984Be50).
									$E\gamma = 736.7, I\gamma = 3.5$ (19778i05).
									I_{γ} : 3.9 2 in 2017Ur03 (Table VII) is probably the total intensity from the two activities in ⁹⁸ Y. Evaluators have subtracted 0.30 <i>3</i> units to account for contribution from the 2.32-s isomer decay obtained from intensity balance at 1591 level in ⁹⁸ Y β^- decay (2.32 s).
789.0 2	0.5 1	2225.15	(2 ⁺)	1436.16	0^+				
$x840.3^{\textcircled{0}}2$						1			$I\gamma = 2.5 \ 10 \ (1977 \text{Si05}).$
854.06 6		854.06	0+	0.0	0+	E0 ^{<i>p</i>}		27.6 7	ce(K)/(γ +ce)=0.90; ce(L)/(γ +ce)=0.10 I _(γ+ce) : from intensity balance, corresponding to %I(γ +ce)=14.4 <i>14</i> in agreement with 15 <i>3</i> deduced by 1987Ma58 from ce(K)(854)/ce(K)(268 γ) (1983VaZJ,1982Ka03). Others: 4.9 <i>18</i> (1983VaZJ), 26 <i>5</i> (1971Fo21). Values of I(E0)(absolute)=4.4 and 7.2 are also quoted by 1983VaZJ based mult(119 γ) from ⁹⁸ Sr β ⁻ . This values agrees with value of 40 (relative to 100 for 1223 γ) in 1984Be50, but a corresponding relative value of ~200 in 1977Si05 was grossly over estimated.

S

L

					⁹⁸ Υβ	- decay (0	.548 s) 2017Ur03,1984Be50,1977Si05 (continued)
							γ ⁽⁹⁸ Zr) (continued)
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger c}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. ^a	Comments
							ceK/ceL=9.7 <i>19</i> (1975Kh05). Energy of E0 transition from level energy difference.
^x 887.9 [#]							γ with I γ =0.5 in 1984Be50 placed from a 2478.9 level, based on $\gamma\gamma$ -coin, but this level is not confirmed by 2017Ur03.
890.6 <i>1</i>	3.0 2	1744.61	2+	854.06	0^+		$E\gamma = 890.3 \ 2, \ I\gamma = 3.0 \ 10 \ (1977 \text{Si05}).$
^x 936.3 [#]							γ with I γ =0.5 in 1984Be50 placed from a 2796.8 level, but this level is not confirmed by 2017Ur03.
972.2 2	0.7 1	2778.71	(2^{+})	1806.20	3-		
^x 991.6 [#]							Uncertain γ with I γ =0.7 in 1984Be50 placed from a 2796.8 level, but this level is not confirmed by 2017Ur03. Also $\gamma\gamma$ -coin with 213 γ in 1984Be50 is inconsistent with proposed level scheme.
1002.3 <i>1</i>	1.1 2	2225.15	(2+)	1222.91	2+		
1033.9 3	0.5 1	2778.71	(2^+)	1744.61	2+		
1099.5 2	0.8 I	4165.18	(2^+)	3065.61	(1) 2+		
1222.9 1	69.8.31	1222.91	$\binom{2}{2^+}$	0.0	0^{+}	E2	$E_{\nu}=1223.0$, $I_{\nu}=100.(1984Be50)$.
	0,10 01	12221/1	-	010	0		$E_{\gamma} = 1222.8 \ 2, \ I_{\gamma} = 100.0 \ (1977 \text{Si05}).$
							I_{γ} : 100.0 30 in 2017Ur03 (Table VII) is likely the total intensity from the two activities in ⁹⁸ Y. Evaluators have subtracted 30.2 8 units to account for contribution from the 2.32-s isomer decay obtained from intensity balance at 1223 level in ⁹⁸ Y β^- decay (2.32 s). Adjusted intensity gives $I_{\gamma}(1223)/100$ decays=37.0 17 consistent with measured $I_{\gamma}/100$ decays=36 3 in 1987Ma58.
1386.3 <i>I</i>	3.2 2	4165.18	1-	2778.71	(2^+)		
1492.4 <i>I</i> 1555 7 <i>I</i>	1.5 I	42/1.11	(2^+)	2778.71	(2^+) 2^+		
1590.9 <i>I</i>	24.7 8	1590.78	2^{+}	0.0	0^{+}	E2	$E\gamma = 1590.9$, $I\gamma = 40.9$ (1984Be50).
							$E\gamma = 1590.7 2$, $I\gamma = 40.5 20 (1977 \text{Si}05)$.
							I_{γ} : 26.7 8 in 2017Ur03 (Table VII) is probably the total intensity from the two activities in ⁹⁸ Y. Evaluators have subtracted 2.04 <i>17</i> units to account for contribution from the 2.32-s isomer
1744.5 <i>1</i>	7.0 3	1744.61	2+	0.0	0^+		$E\gamma = 1744.4$, $I\gamma = 14.9$ (1984Be50). $E\gamma = 1744.1$, $S_{1}I\gamma = 11.5$ <i>10</i> (1977Si05).
^x 1762.7 [#]							γ with I γ =5.4 in 1984Be50 placed from a 3507.0 level, but this level is not confirmed by 2017Ur03.
2045.9 2	0.3 1	4271.11	1-	2225.15	(2^+)		
2174.4 2	1.5 5	4399.07	1-	2225.15	(2^+)		
2225.2 2	0.5 2	2225.15	(2^+)	0.0	0^+		
2227.5 2	1.0 2	4452.58 4165 18	1 1	2223.13	(2') 0 ⁺		$E_{2} = -2305.5 I_{2} = -0.8 (1084R_{0}50)$
2505.7 1	4.0 2	+105.10	1	1037.37	0		$E_{\gamma}=2305.5, 5, 1_{\gamma}=5.5, 15$ (1997) (1994) (19
							$(2305\gamma)(269\gamma)(\theta)$: A ₂ =-0.28 21, A ₄ =+0.29 27 (1984Be50).
2411.9 2	0.4 1	4271.11	1-	1859.37	0^+		

6

 $^{98}_{40}{
m Zr}_{58}$ -6

L

$^{98}{\rm Y}\,\beta^-$ decay (0.548 s) 2017Ur03,1984Be50,1977Si05 (continued)

$\gamma(^{98}$ Zr) (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger c}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. ^a	Comments
2420.6 1	7.6 2	4165.18	1-	1744.61	2+		$E_{\gamma}=2420.6, I_{\gamma}=16.3 (1984Be50).$ $E_{\gamma}=2420.6, 5, I_{\gamma}=13.5, 20 (1977Si05).$
2526.3 1	1.1 <i>1</i>	4271.11	1-	1744.61	2+		
2539.5 2	0.7 1	4399.07	1-	1859.37	0^{+}		
2574.4 1	6.6 2	4165.18	1-	1590.78	2+	(E1)	$E_{\gamma}=2573.9, I_{\gamma}=9.3$ (1984Be50). $E_{\gamma}=2573.9, 5, I_{\gamma}=7.0, 15$ (1977Si05).
2593.0 <i>3</i>	0.5 1	4452.58	1-	1859.37	0^{+}		
2672.7 2	0.6 1	4108.67	(1)	1436.16	0^{+}		
2680.3 1	1.6 <i>1</i>	4271.11	1-	1590.78	2+	(E1)	
2707.8 <i>3</i>	0.6 2	4452.58	1-	1744.61	2^{+}		
2728.9 1	2.2 1	4165.18	1-	1436.16	0^{+}		$E_{\gamma}=2728.3, I_{\gamma}=1.3 (1984Be50).$
2779.0 2	0.4 1	2778.71	(2^{+})	0.0	0^{+}		
2834.4 <i>3</i>	0.4 1	4271.11	1-	1436.16	0^{+}		
2861.7 3	0.5 1	4452.58	1-	1590.78	2+		
2942.3 1	28.8 8	4165.18	1-	1222.91	2+	(E1)	$E\gamma = 2941.3, I\gamma = 46.3 (1984Be50).$ $E\gamma = 2941.3, I\gamma = 48.5, 30 (1977Si05).$ $(2941\gamma)(1223\gamma)(\theta): A_2 = -0.18, I4, A_4 = +0.20, 27 (1984Be50).$
2962 1 5	021	4399.07	1-	1436 16	0^{+}		$(2511)(1225)(0).11_2 = 0.1011, 14 = 10.2027 (1501)250).$
3016.6.2	0.21 0.81	4452 58	1-	1436.16	0+		
3048 3 1	0.01	4271 11	1-	1222 91	2+		
3056 3 3	0.71 0.41	4492 35	1-	1436 16	0+		
3065 5 2	292	3065.61	(1)	0.0	0+		$E_{\gamma} = 3064.4$ $I_{\gamma} = 6.6$ (1984Be50)
5005.5 2	2.7 2	5005.01	(1)	0.0	0		$E_{\nu} = 3064.4.5, I_{\nu} = 4.0.15 (1977 \text{Si}05).$
3176.0 <i>3</i>	0.3 1	4399.07	1-	1222.91	2^{+}		
$x_{32037}^{@}5$							$I_{\gamma}=65.12(19778i05)$
3209.8 2	612	4452 58	1-	1222 91	2+	F1	$F_{V=0.5} = 227.9 [m = 13.7 (1984 Re50)]$
5229.0 2	0.1 2	1152.50	1	1222.71	2	D 1	$E_{\nu}=32283, 5, 1\nu=11, 5, 20$ (1977Si05).
3254 4 2	102	4108 67	(1)	854.06	0^{+}		
3311.1 7	15.1.5	4165.18	1-	854.06	0^{+}		$E_{\gamma}=3310.05$, $I_{\gamma}=20.3$ (1977Si05).
x3375 7 [@] 5			-				$I_{2} = 5.20 (10778i05)$
3416.9.1	101	4271-11	1-	854.06	0^{+}		17-5.5 20 (19775105).
$x_{2469} 6^{0} 5$	1.0 1	72/1.11	1	054.00	0		$L_{1}=55.20(10778;05)$
3508 4 2	081	1152 58	1-	854.06	0+		17-3.3 20 (19773103).
2629 6 2	0.01	4452.56	1	854.00	0+		
3030.0 J	0.4 I	4492.55	1 (1)	0.04.00	0+		
4108.3 2	0.4 I	4108.07	(1)	0.0	0+		
4104.9 2	1.1 I 0.5 I	4105.18	1	0.0	0+		
42/1.3 2	0.51	42/1.11	1 1-	0.0	0+		
4390.0 2	2.0 I 17.0 6	4399.07 1150 50	1 1	0.0	0+		$E_{22} = 4450.2 I_{22} = 24.8 (1084 \text{P}_{2} = 50)$
4432.4 2	17.00	++52.38	1	0.0	0		$E_{\gamma} = 4450.2, 1_{\gamma} = 24.6 (1964BC50).$ $E_{\gamma} = 4450.1 5, 1_{\gamma} = 28.5 30 (1977Si05).$
4492.0 2	3.6 1	4492.35	1	0.0	0'		

-

⁹⁸Y β⁻ decay (0.548 s) 2017Ur03,1984Be50,1977Si05 (continued)

$\gamma(^{98}\text{Zr})$ (continued)

[†] From 2017Ur03, unless otherwise stated. To match the scale of relative intensities in 2017Ur03, and 1984Be50 or 1977Si05, multiply values in 2017Ur03 by a factor of ≈ 0.156 .

^{\ddagger} γ from 1984Be50, not reported by 2017Ur03. Intensity is readjusted to the scale in 2017Ur03.

[#] γ from 1984Be50 only, and placed in the level scheme, but corresponding level is not confirmed by 2017Ur03. Intensity is relative to 100 for 1223 γ .

[@] γ from 1977Si05 only. Intensity is relative to 100 for 1223 γ .

& Assigned by evaluators from intensity balance at 1806 level and branching ratios from values given in Table VIII of 2017Ur03.

^{*a*} From Adopted Gammas, based some on $\gamma\gamma(\theta)$ and RUL in the present work. Assumed assignments given in square brackets are from ΔJ^{π} in this dataset.

^b No γ corresponding to ce seen. High multipolarities excluded by RUL from known T_{1/2}(level).

^c For absolute intensity per 100 decays, multiply by 0.52 5.

^d Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^e Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

98 Y β^- decay (0.548 s) 2017Ur03,1984Be50,1977Si05

