History											
Туре	Author	Citation	Literature Cutoff Date								
Full Evaluation	Jun Chen, Balraj Singh	NDS 164, 1 (2020)	15-Feb-2020								

 $Q(\beta^{-})=1793$ 7; S(n)=7279 5; S(p)=6176 3; $Q(\alpha)=-2488$ 4 2017Wa10

S(2n)=16753 6, S(2p)=15407 3 (2017Wa10).

Other reactions: ⁹⁰Zr(¹⁸O,¹⁰B): E=90 MeV. Measured Q, differential cross-section.

98Mo(p,n) GDR: 1987Ku13, 1986Mo10, 1985Ra11, 1980St26, 1976Ma07, 1975Gr01, 1974Po11, 1969Hi02.

Additional information 1. ${}^{96}Mo({}^{14}N, {}^{12}C)$ and ${}^{97}Mo({}^{14}N, {}^{13}C)$ E=97 MeV, measured Q value (1976Mi13).

 ${}^{96}Mo({}^{32}S, {}^{30}P), E=180 \text{ MeV}: 1995He17. \text{ Measured } \sigma(\theta).$

Theory references: consult the NSR database (www.nndc.bnl.gov/nsr/) for 12 primary references, 8 dealing with nuclear structure calculations and 5 with decay modes and half-lives.

⁹⁸Tc Levels

Cross Reference (XREF) Flags

		A B C D	 ⁹⁴Zr(⁷Li,3nγ) ⁹⁶Zr(⁶Li,4nγ) ⁹⁷Mo(p,n) IA ⁹⁷Mo(³He,d) 	$ \begin{array}{cccccc} E & {}^{97}Mo(\alpha,t) & I & {}^{99}Tc(p,d) \\ F & {}^{98}Mo(p,n) & J & {}^{99}Tc(d,t) \\ R & G & {}^{98}Mo(p,n\gamma) & K & {}^{99}Ru(\gamma,p\gamma) \\ H & {}^{98}Mo({}^{3}He,t) \end{array} $						
E(level) [†]	$J^{\pi \#}$	T _{1/2} &	XREF	Comments						
0.0	(6) ⁺ @	4.2×10 ⁶ y 3	AB DEFGHIJK	%β ⁻ =100 No ε decay has been detected (1993Ko64). J ^π : (2J+1) intensity rule in (p,d) and L(³ He,t)=6 from 0 ⁺ suggest J ^π =5 ⁺ , 6 ⁺ for g.s. and 21.8 level. J ^π =6 ⁺ is preferred for g.s. due to log ft=14 to a 4 ⁺ state in ⁹⁸ Ru. This would imply 5 ⁺ for 21.8 level. T _{1/2} : from 1966GoZZ (also 1973Ok05 priv. comm.). Others: 6.5×10 ⁶ y or 9×10 ⁶ y (1993Ko64), 1.5×10 ⁶ y 7 (1956Ok15), ≈10×10 ⁴ y (1955Ka26).						
21.80 <i>9</i> 65.41 <i>12</i>	$(5)^{+}$ ($(4)^{+}$	2.4 ns 6 <1.4 ns	AB DE GHIJK DEFGHIJK	DE GHIJK J^{π} : see comment for g.s. DEFGHIJK J^{π} : (2J+1) rule in (p,d) with L(p,d)=2 suggests $J^{\pi}=3^+,4^+$; but (M1) 43.6 γ to (5) ⁺ favors 4 ⁺ . L(³ He,t)=2 from 0 ⁺ (giving 1 ⁺ ,2 ⁺ ,3 ⁺)						
73.35 16	(2 to 5) ⁻		FG Jk	J^{π} : M1+E2 117.0 γ from (3,4) ⁻ . T ₁ α : see comment for 90.8 level.						
81.68 13	(4)+	<1.4 ns	DE GHIJ	J^{π} : L(p,d)=L(d,t)=2 from 9/2 ⁺ ; L(³ He,d)=4 from 5/2 ⁺ ; 59.8 γ to 21.8, (5) ⁺ level not E2 from RUL, although J^{π} =3 ⁺ is suggested from 2J+1 intensity rule; 56.7 γ from (3) ⁻ .						
90.77 16	(2,3) ⁻	14.7 μs 5	FG k	%IT=100 J^{π} : 47.9 γ from (3) ⁻ and M1+E2 99.5 γ from (3,4) ⁻ . No γ ray from this level has been reported to either the g.s., (6) ⁺ or the 21.8, (5) ⁺ level. It is likely that this level decays through a highly converted transition to the 65.4, (4) ⁺ level. T _{1/2} : from γ (t) of 43.6 γ -21.8 γ cascade. Weighted average of 14.8 μ s 5, 14.4 μ s 5 ((γ , $p\gamma$),1978Ba18) 14.6 μ s 7 ((p , $n\gamma$),1976We06), 15.5 μ s 8 ((p , $n\gamma$),1961Sc11). This half-life is assumed to correspond to the 90.8 level. The present data, however, do not exclude this to belong to 73.3 level.						
106.43 ^{<i>a</i>} 6	$(7)^{+}$ [@]		AB DEFGHIJ	J^{π} : 106.5 γ D to (6) ⁺ ; L(p,d)=L(d,t)=2 from 9/2 ⁺ . See additional argument in footnote.						

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

⁹⁸Tc Levels (continued)

E(level) [†]	$J^{\pi \#}$	$T_{1/2}^{\&}$		XREF	Comments
138.59 15	$(3)^{-}$	8.2 ns <i>3</i>		DEFGH	J^{π} : L(³ He,d)=1 from 5/2 ⁺ ; L(³ He,t)=(3,1) from 0 ⁺ ; Possible
					configuration= $\pi 2p_{1/2} \otimes \nu 2d_{5/2}^{-1}$.
142.0 10	$(2 \text{ to } 7)^+$			IJ	J^{π} : L(p,d)=2 from 9/2 ⁺ .
152.07 13	$(3,4,5)^+$	<1.4 ns		G	J^{π} : M1 86.7 γ to (4) ⁺ .
190.28 16	(3,4)-	<1.4 ns		D FG	J^{π} : strong excitation in (p,n γ) suggests J \leq 4; E1(+M2) 233.8 γ from 4 ⁺ ,5 ⁺ (424 level).
203.74 14	$(4)^+$	<1.4 ns		DEFGHIJ	XREF: F(?).
					J^{π} : L(p,d)=L(d,t)=0+2 from 9/2 ⁺ ; 138.3 γ M1 to (4) ⁺ ; 148.0 γ E1(+M2) from (3) ⁻ . But L(³ He.t)=2 from 0 ⁺ is inconsistent.
268.11 15	$4^+, 5^+$			DEFG IJ	J^{π} : L(p,d)=0+2 from 9/2 ⁺ ; 202.7 γ M1(+E2) to (4) ⁺ .
306.18 15	$(3,4,5)^+$			FGHIJ	XREF: F(311)G(?)H(313).
					J^{π} : 240.8 γ M1 to (4) ⁺ .
321.92 16	$(2,3,4)^{-}$			FG	J^{π} : 183.3 γ M1 to (3) ⁻ .
328.53 13	$(3,4,5)^+$			DEFGHIJ	J^{π} : 263.0 γ M1 to (4) ⁺ ; L(³ He,t)=4 from 0 ⁺ .
346.93 12	$(6,7)^+$		Α	E IJ	J^{π} : 240.5 γ D to (7) ⁺ ; L(p,d)=L(d,t)=2 from 9/2 ⁺ .
351.33 15	(3)-			D FGH	J^{π} : 212.7 γ M1(+E2) to (3) ⁻ ; L(³ He,d)=1 from 5/2 ⁺ .
					Configuration= $\pi 2p_{1/2} \otimes \nu 2d_{5/2}^{-1}$. Strongly populated state is expected
275 092 17	$(2 \ 4 \ 5)^{+}$			C	to be the 3 (19/6Ma16). $I\pi$, 200 7 $_{\rm CV}$ M1 to (4) ⁺
373.08? 17	$(3,4,3)^{+}$			G	J^{T} , 509.77 MI to (4) ² .
390.13 16	(3) - C			DEFGHIJ	J [*] : L(p,d)=L(d,t)=2 from $9/2^{+}$. 2J+1 rule in (p,d) suggests 2 ⁺ but M1(+E2) 186.4 γ to (4) ⁺ favors 3 ⁺ .
424.12 22	4+,5+			D FGHIJ	J^{π} : L(p,d)=L(d,t)=0+2 from 9/2 ⁺ ; L(³ He,d)=2 from 5/2 ⁺ .
441.02 5	$(7)^+$		AB		J^{π} : 441.0 γ M1(+E2) to (6) ⁺ , 419.2 γ E2 to (5) ⁺ .
447.03	т			GΙ	$\begin{array}{c} \text{XREF: } G(?). \\ \text{We L}(n,d) = A(n,2) \text{ from } O(2^{\frac{1}{2}}) \end{array}$
157 80 16	$(2 3 4)^{-}$				J^{*} : L(p,d)=4(+2) from 9/2 [*] .
457.69 10	(2,3,4)				J^{π} : 319.0 γ M1 to (3) ⁻ , 106.7 γ M1+E2 to (3) ⁻ . But L(d,t)=0 from 9/2 ⁺ is inconsistent.
484.35 18	$(2 \text{ to } 5)^{-}$			FG	J^{π} : 294.1 γ M1(+E2) to (3,4) ⁻ and 345.8 γ to (3) ⁻ .
502.14 25				G	
537.5 20	$(2 \text{ to } 7)^+$			IJ	J^{n} : L(p,d)=L(d,t)=2 from 9/2 ⁺ .
543.45 18	(1 to 5)			DFG	$J^{*}: 221.0\gamma \text{ MI}(+\text{E}2) \text{ to } (2,3,4) ; 404.0\gamma \text{ to } (3) ; L=(1) \text{ from } 5/2^{+} \text{ target}$
569 1	(2, 4-, 7)(+)			-	for a weak peak in ("He,d) distavors $J=5$.
508 4 609 5 15	$(2 10 7)^{(1)}$			1 T1	$J^{n}: L(p,d) = (2)$ from $9/2^{+}$. $I^{\pi}: I(p,d) = I(d t) = 0 + 2$ from $9/2^{+}$
622 31 20	$(2,3,4)^{-}$			G	J^{π} : 432 0v M1(+E2) to (3.4) ⁻ and 483 7v M1(+E2) to (3) ⁻
624.5 25	$(4^+, 5^+)$			ĨIJ	J^{π} : L(p,d)=(2+0) from 9/2 ⁺ .
639.5 25	$(2 \text{ to } 7)^+$			IJ	J^{π} : L(p,d)=L(d,t)=2 from 9/2 ⁺ .
652.72? 16				GH	
665.80 19	$(2,3,4)^+$			G	J^{π} : 275.7 γ M1+E2 to (3) ⁺ .
670.23 23	$(A F)^+$		Α	C T1	π_{1} , $L(n, d) = 2(1, 0)$ from $0/2^{+}$ and $2((5, 1, 4, 2, 2, 4)^{-})$
088.2 0	$(4,5)^{+}$			G LJ	J ^{$(1): L(p,d)=2(+0)$ from $\frac{9}{2}$ and $\frac{500.5\gamma}{10}$ (2,5,4).}
101.5 10	4,5			13	difference is much larger than the quoted uncertainty
					J^{π} : L(d,t)=0+2 from 9/2 ⁺ .
713.67 18	$(4,5)^+$			GH	XREF: H(720).
					J^{π} : L(p,d)=0+2 for a level at 715 5.
747.0 20	$4^+, 5^+$			IJ	J^{π} : L(p,d)=L(d,t)=0+2 from 9/2 ⁺ .
764.34 14	$(8)^+$		AB		J^{π} : 323.3 γ M1(+E2) to (7) ⁺ , excitation function in (¹ Li,3n γ).
/66.0 20	$(4^{+},5^{+})$			IJ	$J^{*}: L(p,d) = (2+0) \text{ from } 9/2^{+}.$
199.5 15	$(2 \text{ to } 7)^+$			ЦЈ т 1	J: $L(p,q) = L(q,t) = 0 + 2$ from $9/2^+$. I^{π} : $L(p,q) = L(d,t) = 2$ from $0/2^+$
888.5 15	(2 10 7) $4^+.5^+$			LJ HT I	J : L(p,u) - L(u,t) - 2 from p/2 : XREF: H(877).
500.0 10	. ,5				J^{π} : L(p,d)=L(d,t)=0+2 from 9/2 ⁺ .
923.5 25	(2 to 7) ⁺			IJ	J^{π} : L(p,d)=2 from 9/2 ⁺ .

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

⁹⁸Tc Levels (continued)

E(level) [†]	$J^{\pi \#}$	XRE	F	Comments
951.5 25	4+,5+		IJ	J^{π} : L(p,d)=0+2 from 9/2 ⁺ .
988? 4			I	
1018.5 3	$(7,8,9)^+$	AB	IJ	XREF: $I(1015)J(1027)$.
1048 4	$(2 \text{ to } 7)^+$		тт	J^{*} : L(p,q)=4 from 9/2° and 912.0 γ to (7)°; 71.9 γ from (8).
1040 4	(2 10 7)		15	J^{π} : L(p,d)=L(d,t)=2 from 9/2 ⁺ .
1057.5 25	+		IJ	XREF: J(1073).
				J^{π} : L(p,d)=4 from 9/2 ⁺ .
1090.65 ^c 14	(8)-	AB		J^{π} : 984.3 γ and 649.6 γ E1 to (7) ⁺ and 325.8 γ E1 to (8 ⁺); band assignment.
1102.85" 17	(9)+	AB	IJ	XREF: $I(1099.5)J(1108)$.
1126.5 10	$(2 \text{ to } 7)^+$		тт	$S = E(p,u) = 4$ from $9/2^{-1}$, 990.57 (E2) to (7) , band assignment. XREF: $J(1134)$.
112010 10	(2 00 7)			J^{π} : L(p,d)=L(d,t)=2 from 9/2 ⁺ .
1157.5 10	$(2 \text{ to } 7)^+$		IJ	XREF: J(1164).
4				J^{π} : L(p,d)=2 from 9/2 ⁺ .
1166.34 ^{<i>a</i>} 16	$(9)^{-}$	AB		J^{π} : 402.0 γ E1 to (8) ⁺ and band assignment.
1201.5 <i>10</i>			IJ	$J'': L(p,d)=4 \text{ from } 9/2^{+}$.
1207.810 15	(9)+	AB	IJ	XREF: I(1201.5)J(1202). I_{π} : 766 for and 1101 for to (7) ⁺ , 422 for to (8) ⁺ ; I (n d)=4 from 0/2 ⁺ ; hand
				J : 700.07 and 1101.07 to (7), 455.47 to (8); $L(p,q)=4$ from $9/2$; band assignment
1212.0 25	$(2 \text{ to } 7)^+$		IJ	XREF: J(1220).
				J^{π} : L(p,d)=L(d,t)=2 from 9/2 ⁺ .
1254.3 3	4+,5+	Α	IJ	XREF: $I(1252.5)J(1257)$.
1275 /	<u>1+ 5+</u>		тт	J'': L(p,d)=0+2 from $9/2'$.
1273 4	+ ,J		15	J^{π} : L(p,d)=L(d,t)=0+2 from 9/2 ⁺ .
1296 4	4+,5+		IJ	XREF: J(1300).
				J^{π} : L(p,d)=0+2 from 9/2 ⁺ .
1310.5 30	4+,5+		IJ	XREF: $J(1314)$.
1338 0 20	A+ 5+		т	J [*] : $L(p,d)=L(d,t)=0+2$ from $9/2^+$. I^{π} : $I(p,d)=0+2$ from $9/2^+$.
1354.4	$(4,5)^+$		ī	J^{π} : L(p,d)=2(+0) from 9/2 ⁺ .
1373? 5			I	
1388 4	$(2 \text{ to } 7)^{(+)}$		I	J^{π} : L(p,d)=(2) from 9/2 ⁺ .
1399.5 30	$(2 \text{ to } 7)^+$		I	J^{π} : L(p,d)=2 from 9/2 ⁺ .
1441 0	$(2 \text{ to } /)^{+}$		1 T	$J^{n}: L(p,d)=2 \text{ from } 9/2^{+}$.
1486.5 30	(4,3) (2 to 7) ⁺		i	J^{π} : L(p,d)=2 from 9/2 ⁺ .
1549.73 ^b 17	(10^+)	AB		J^{π} : 341.9 γ , D to (9) ⁺ ; band assignment.
1582.44 ^c 17	$(10)^{-}$	AB		J^{π} : 416.1 γ M1(+E2) to (9) ⁻ ; band assignment.
1851.39 ^d 19	$(11)^{-}$	AB		J^{π} : 268.9 γ M1(+E2) to (10) ⁻ , 685.3 γ (E2) to (9) ⁻ ; band assignment.
1920.3 ^e 4	(10 ⁻)	AB		XREF: A(?).
L				J^{π} : 754.1 γ to (9) ⁻ , 829.9 γ to (8) ⁻ ; band assignment.
1962.7 ⁰ 11	(11^+)	В		J^{π} : possible band member.
$1995.7^{\alpha} 4$	(11^{+}) $(12)^{-}$	AB		J^{π} : $\Delta J = (2)$ (E2) 892.7 γ to (9) ⁺ ; band assignment.
$2303.05^{-}23$	(12)			J. $VII(\pm 2)$ 432.37 to (11) and band assignment.
∠308.0 ⁷ 4	(11)	AD		ANEF. A(1). J ^{π} : 786.4 γ to (10) ⁻ and band assignment.
2481.6 ^b 5	(12^{+})	AB		J^{π} : 932.1 ν to (10 ⁺) and band assignment.
2670.5 ^e 7	(12^{-})	В		J^{π} : possible band member.
2677.3 ^d 3	(13)-	AB		J^{π} : 373.5 γ M1(+E2) to (12) ⁻ ; band assignment.
2810.4 ^b 6	(13 ⁺)	AB		J^{π} : 328.8 γ to (12 ⁺) and band assignment.
3055.3 ^a 7	(13 ⁺)	AB		J^{π} : 1059.6 γ to (11 ⁺); band assignment.

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

98Tc Levels (continued)

E(level) [†]	J π #	XREF	Comments
3129.5 [°] 4	(14 ⁻)	AB	J^{π} : 452.0 γ to (12) ⁻ and band assignment.
3265.6 ^f 9	(13 ⁻)	В	J^{π} : 897.5 γ to (11 ⁻) and band assignment.
3724.3 ^d 8	(15 ⁻)	В	J^{π} : 1047.3 γ to (13 ⁻) and band assignment.
9656 [‡]	(0^{+})	С	J^{π} : analog of 0 ⁺ , g.s. in ⁹⁸ Mo.
10416 [‡]	(0^{+})	С	J^{π} : analog of 0 ⁺ , 735 in ⁹⁸ Mo.
10476 [‡]	(2 ⁺)	С	J^{π} : analog of 2 ⁺ , 787 in ⁹⁸ Mo.
11106 [‡]	(2 ⁺)	С	J^{π} : analog of 2 ⁺ , 1432 in ⁹⁸ Mo.
11433 [‡]	(2^{+})	С	J^{π} : analog of 2 ⁺ , 1759 in ⁹⁸ Mo.
11896 [‡]		С	
11996 [‡]		С	
12216 [‡]		С	
12326 [‡]		С	
12433 [‡]		С	
12616 [‡]		С	
12656 [‡]		С	

[†] From least-squares fit to γ -ray energies if available and from transfer reactions (p,d) or (d,t) for others, unless otherwise noted.

^{\ddagger} IAR from ⁹⁷Mo(p,n) reaction.

[#] L(p,d)=2 and L(d,t)=2, both from 9/2⁺ target give J=2 to 7, π =+. In heavy-ion γ -ray reactions, ascending spins are assumed as the excitation energy rises, consistent with yrast pattern of population of levels. ^(a) Configuration= $\pi l g_{9/2}^3 \otimes v 2 d_{5/2}^{-1}$. Multiplet (J=2 to 7, π =+) indicated by L(p,d)=2 (from 9/2⁺) and L(³He,d)=4 (from 5/2⁺).

Individual spin assignments are based on (2J+1)-intensity rule in (p,d) (1977Em02), with exceptions noted.

& From $\gamma(t)$ in (p,n γ), unless otherwise stated.

^a Band(A): Band based on 7⁺.

^{*b*} Band(B): $\Delta J=1$ band based on (9⁺).

^{*c*} Band(C): $\pi g_{9/2} \otimes \nu h_{11/2}, \alpha = 0.$

^{*d*} Band(c): $\pi g_{9/2} \otimes \nu h_{11/2}, \alpha = 1$.

^e Band(D): $\pi g_{9/2} \otimes \nu h_{11/2}, \alpha = 0$. Possible chiral doublet partner of band based on 8⁻.

^{*f*} Band(d): $\pi g_{9/2} \otimes \nu h_{11/2}, \alpha = 1$. Possible chiral doublet partner of band based on 8⁻.

	Adopted Levels, Gammas (continued)											
							$\gamma(^{98}\text{Tc})$					
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^π	Mult. [#]	$\delta^{\#}$	α [@]	Comments			
21.80	(5)+	21.8 /	100	0.0 (6))+	(M1)		3.0	B(M1)(W.u.)=0.22 +8-5 Mult.,δ: $\delta(\text{E2/M1})$ =0.255 <i>18</i> from γ+ce intensity balance of 21.8γ and 43.5γ in (γ,pγ), assuming mult(43.5γ)=M1 and using theoretical conversion coefficients from BrIcc code. But this value would require a large half-life of >0.2 μs for the 21.8 level (lower limit is obtained at RUL=300 for B(E2)(W.u.)), contradicting to the short-lived nature of the 21.8-keV transition as stated in 1978Ba18 and to the measured value of 2.4 ns from γ(θ) in (p,nγ). RUL=300 for B(E2)(W.u.) of 21.8γ would limit $\delta(\text{E2/M1})$ to <0.026 assuming T _{1/2} (21.8)<1 ns. 1978Ba18 have suggested mult=E1+1% M2, which, however, results in an unreasonably large B(M2)(W.u.). From these considerations,			
65.41	(4) ⁺	43.60 10	100	21.80 (5))+	(M1)		3.01	evaluators have assigned mult=M1. $\alpha(K)=2.63$ 4; $\alpha(L)=0.319$ 5; $\alpha(M)=0.0580$ 9 $\alpha(N)=0.00918$ 15; $\alpha(O)=0.000595$ 10 E_{γ} : weighted average of 43.62 10 from (p,n γ) and 43.5 2			
81.68 106.43	$(4)^+$ $(7)^+$	59.8 <i>1</i> 106.46 <i>6</i>	100 100	21.80 (5) 0.0 (6))+)+	[M1] (M1)		0.234	from (γ, pγ). Mult.: not pure E2 (or <10% E2) from RUL. $\alpha(K)=0.205 \ 3; \ \alpha(L)=0.0245 \ 4; \ \alpha(M)=0.00445 \ 7$ $\alpha(N)=0.000707 \ 10; \ \alpha(O)=4.64\times10^{-5} \ 7$ E : from (⁷ Li 3na) Other: 106.4.5 from (n na)			
138.59	(3)-	47.86 10	100	90.77 (2,	,3)-	[M1+E2]		10 8	Mult.: D from γ anisotropy in (⁷ Li,3n γ). $\alpha(K)=75; \alpha(L)=33; \alpha(M)=0.55$ $\alpha(N)=0.077; \alpha(O)=0.00117$ If M1, B(M1)(W.u.)=0.0080. If E2, B(E2)(W.u.)=550. Mult.: from RUL of 300 for B(E2)(W.u.), mult(48 γ) cannot			
		56.70 <i>10</i> 65.17 <i>10</i>	4.6 2.5	81.68 (4) 73.35 (2	$(to 5)^{+}$	[E1] [M1,E2]		0.678 3.4 <i>25</i>	be pure E2. B(E1)(W.u.)= 1.9×10^{-6} 14 $\alpha(K)=2.5$ 18; $\alpha(L)=0.7$ 6; $\alpha(M)=0.13$ 12 $\alpha(N)=0.019$ 16; $\alpha(O)=0.0005$ 3			
152.07	(3,4,5)+	86.66 <i>3</i>	100	65.41 (4)	.)+	M1(+E2)	<0.16	0.438 22	If M1, B(M1)(W.u.)=8×10 ⁻⁵ . If E2, B(E2)(W.u.)=2.9. α (K)=0.380 17; α (L)=0.048 5; α (M)=0.0087 8 α (K)=0.00127 12 (Q) α 5: 110 ⁻⁵ .2			
190.28	(3,4) ⁻	51.79 10	270	138.59 (3))-	[M1,E2]		86	$\alpha(N)=0.0013 / 12; \ \alpha(O)=8.5 \times 10^{-5} 3$ $\alpha(K)=5 4; \ \alpha(L)=1.9 \ 18; \ \alpha(M)=0.4 4$ $\alpha(N)=0.05 \ 5; \ \alpha(O)=0.0009 \ 6$ If M1, B(M1)(W.u.)>0.029. If E2, B(E2)(W.u.)>2500. Mult.: from RUL of 300 for B(E2)(W.u.), mult(52 γ) cannot be pure E2.			
		99.48 8	100 8	90.77 (2,	.,3)-	M1(+E2)	<0.15	0.294 12	$\alpha(K) = 0.256 \ 10; \ \alpha(L) = 0.0316 \ 21; \ \alpha(M) = 0.0058 \ 4 \\ \alpha(N) = 0.00091 \ 6; \ \alpha(O) = 5.74 \times 10^{-5} \ 17$			
		116.95 5	50 5	73.35 (2	to 5) ⁻	M1+E2	1.2 +15-6	0.49 18	$\alpha(K) = 0.41 \ 14; \ \alpha(L) = 0.07 \ 3; \ \alpha(M) = 0.013 \ 6 \ \alpha(N) = 0.0020 \ 8; \ \alpha(O) = 7.8 \times 10^{-5} \ 24$			

S

From ENSDF

⁹⁸₄₃Tc₅₅-5

⁹⁸₄₃Tc₅₅-5

L

						Adopted I	evels, Gammas (o	continued)						
	γ ⁽⁹⁸ Tc) (continued)													
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	α [@]	Comments					
203.74	$(4)^{+}$	65.17 ^{<i>a</i>} 10		138.59	(3)-	[E1]		0.456	$\alpha(K)=0.398~6; \ \alpha(L)=0.0478~7; \ \alpha(M)=0.00858~13$					
		122.36 15	84 8	81.68	$(4)^{+}$	M1+E2	0.33 7	0.203 18	$\alpha(N)=0.001325\ 20;\ \alpha(O)=7.34\times10^{-5}\ 11$ $\alpha(K)=0.174\ 15;\ \alpha(L)=0.024\ 3;\ \alpha(M)=0.0043\ 6$ $\alpha(N)=0.00067\ 8;\ \alpha(O)=3.75\times10^{-5}\ 25$					
		138.42 11	100 8	65.41	$(4)^{+}$	M1		0.1137	$\alpha(K) = 0.0994 \ 14; \ \alpha(L) = 0.01182 \ 17; \ \alpha(M) = 0.00215 \ 3$ $\alpha(N) = 0.00341 \ 5; \ \alpha(Q) = 2.25 \times 10^{-5} \ 4$					
268.11	4+,5+	202.70 8	100	65.41	$(4)^{+}$	M1(+E2)	< 0.43	0.045 5	$\alpha(N)=0.0003413, \alpha(O)=2.23\times10^{-6}4$ $\alpha(K)=0.0404; \alpha(L)=0.00487; \alpha(M)=0.0008812$ $\alpha(N)=0.00013918; \alpha(O)=8.7\times10^{-6}7$					
306.18	(3,4,5)+	240.77 9	100	65.41	$(4)^+$	M1		0.0261	$\alpha(K) = 0.0229 4; \ \alpha(L) = 0.00267 4; \ \alpha(M) = 0.000485 7$ $\alpha(N) = 7.72 \times 10^{-5} 11; \ \alpha(O) = 5.14 \times 10^{-6} 8$					
321.92	(2,3,4) ⁻	131.66 5 183.33 <i>11</i>	9 <i>1</i> 100 8	190.28 138.59	$(3,4)^{-}$ $(3)^{-}$	M1		0.0534	α (K)=0.0467 7; α (L)=0.00551 8; α (M)=0.000999 14 α (N)=0.0001589 23; α (O)=1.053×10 ⁻⁵ 15					
328.53	$(3,4,5)^+$	246.86 23	11 4	81.68	$(4)^{+}$				-					
		262.96 13	100 8	65.41	$(4)^{+}$	M1		0.0208	$\alpha(N)=6.13\times10^{-5} 9; \alpha(O)=4.09\times10^{-6} 6$ $\alpha(K)=0.0182 3; \alpha(L)=0.00213 3; \alpha(M)=0.000386 6$					
346.93	(6,7)+	306.85 <i>12</i> 240.5 <i>1</i>	13 <i>3</i> 100	21.80 106.43	$(5)^+$ $(7)^+$	(M1)		0.0262	α (K)=0.0229 4; α (L)=0.00268 4; α (M)=0.000486 7 α (N)=7.74×10 ⁻⁵ 11; α (O)=5.16×10 ⁻⁶ 8					
351.33	(3)-	147.95 <i>13</i>	<10	203.74	$(4)^{+}$	E1(+M2)	<0.27	0.065 23	E _γ ,Mult.: from (⁷ Li,3nγ), with mult=D from γ anisotropy. α (K)=0.057 20; α (L)=0.007 3; α (M)=0.0013 6 α (N)=0.00021 9; α (O)=1.3×10 ⁻⁵ 5					
		212.67 9	100 9	138.59	(3)-	M1(+E2)	0.24 +11-20	0.039 3	$\delta(M2/E1) < 0.3.$ $\alpha(K) = 0.0337 \ 23; \ \alpha(L) = 0.0041 \ 4; \ \alpha(M) = 0.00074 \ 7$					
375.08?	(3,4,5)+	309.66 12	100	65.41	$(4)^+$	M1		0.01373	$\alpha(N)=0.00011770; \alpha(D)=7.5\times10^{-2}4$ $\alpha(K)=0.012047; \alpha(L)=0.00139720; \alpha(M)=0.0002534$					
390.13	(3)+	186.39 7	100	203.74	(4)+	M1(+E2)	<0.4	0.057 6	$\alpha(N)=4.03\times10^{-5} 6; \ \alpha(O)=2.70\times10^{-5} 4$ $\alpha(K)=0.049 5; \ \alpha(L)=0.0061 8; \ \alpha(M)=0.00110 15$ $\alpha(N)=0.000174 22; \ \alpha(O)=1.09\times10^{-5} 9$					
424.12	4+,5+	73.1 ^{<i>a</i>} 4 233.84 <i>15</i>	≤56 100 <i>9</i>	351.33 190.28	$(3)^{-}$ $(3,4)^{-}$	E1(+M2)	<0.14	0.0129 14	$\alpha(K)=0.0113 \ 12; \ \alpha(L)=0.00132 \ 16; \ \alpha(M)=0.00024 \ 3$ $\alpha(N)=3.8\times10^{-5} \ 5; \ \alpha(Q)=2.4\times10^{-6} \ 3$					
441.02	$(7)^{+}$	334.6 <i>1</i> 419.2 2	8.5 <i>10</i> 6.1 <i>10</i>	106.43 21.80	$(7)^+$ $(5)^+$	D E2			$E_{\gamma},I_{\gamma},Mult.:$ from (⁷ Li,3n γ). $E_{\gamma},I_{\gamma},Mult.:$ from (⁷ Li,3n γ).					
447.0	+	440.99 6	100 3	0.0	$(6)^+$ (3) ⁺	M1(+E2)	<0.4		$E_{\gamma}, I_{\gamma}, Mult.$: from (⁷ Li, 3n γ).					
457.89	(2,3,4) ⁻	106.66 9	11.6 14	351.33	$(3)^{-}$	M1+E2	0.8 3	0.53 15	$\alpha(K)=0.44$ 12; $\alpha(L)=0.08$ 3; $\alpha(M)=0.014$ 5 $\alpha(N)=0.0021$ 7: $\alpha(Q)=8.5\times10^{-5}$ 19					
		267.64 11	44 4	190.28	(3,4) ⁻	M1(+E2)	<0.4	0.0211 13	$\alpha(K) = 0.0184 II; \alpha(L) = 0.00219 I7; \alpha(M) = 0.00040 3$ $\alpha(N) = 6.3 \times 10^{-5} 5; \alpha(O) = 4.10 \times 10^{-6} 20$ L: other: 100 (1978MiZO)					
		319.01 <i>13</i>	100 11	138.59	(3)-	M1		0.01274	$\alpha(\text{K})=0.01117 \ 16; \ \alpha(\text{L})=0.001295 \ 19; \ \alpha(\text{M})=0.000235 \ 4 \ \alpha(\text{N})=3.74 \times 10^{-5} \ 6; \ \alpha(\text{O})=2.50 \times 10^{-6} \ 4$					

6

From ENSDF

Adopted Levels, Gammas (continued)												
γ ⁽⁹⁸ Tc) (continued)												
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	α [@]	Comments			
484.35	(2 to 5) ⁻	294.08 12	100 14	190.28	(3,4)-	M1(+E2)	<0.45	0.0166 10	$\begin{aligned} &\alpha(K) = 0.0145 \ 9; \ \alpha(L) = 0.00172 \ 13; \\ &\alpha(M) = 0.000312 \ 24 \\ &\alpha(N) = 4.9 \times 10^{-5} \ 4; \ \alpha(O) = 3.22 \times 10^{-6} \ 16 \end{aligned}$			
502.14		345.75 17	6.7 14	138.59	(3) $(3 4 5)^+$							
543.45	(1 to 5) ⁻	221.64 <i>11</i>	100 23	321.92	(3,4,3) $(2,3,4)^-$	M1(+E2)	<0.8	0.040 8	α (K)=0.035 7; α (L)=0.0044 11; α (M)=0.00080 20 α (N)=0.00012 3; α (O)=7.5×10 ⁻⁶ 12			
(22.2.4)	(2.2.1)	404.63 16	80 14	138.59	(3)-							
622.31	(2,3,4)-	$432.04\ 17$ $472^{a}\ 2$	100 10	190.28 152.07	$(3,4)^{-}$ $(3,4,5)^{+}$	M1(+E2)	<1.2					
652.72?		483.7 2 324.32 ^a 13	≤ 100 ≤ 100	138.59 328.53	$(3)^{-}$ $(3,4,5)^{+}$	M1(+E2)	<1.8					
665.80	(2,3,4)+	384.49 ^{<i>a</i>} 15 275.67 11	38 8 100 8	268.11 390.13	$4^+,5^+$ (3) ⁺	M1+E2	0.41 +20-27	0.0207 20	$\alpha(K)=0.0180 \ 17; \ \alpha(L)=0.0022 \ 3; \ \alpha(M)=0.00039 \ 5$			
		583.68 ^a 23	69 13	81.68	$(4)^{+}$				$\alpha(N)=0.2\times10^{-6}$ 8; $\alpha(O)=4.0\times10^{-6}$ 5			
670.23		323.3 ^{&} 2	100	346.93	$(6.7)^+$				E_{α} : from (⁷ Li, 3n γ) only.			
688.2	$(4,5)^+$	366.5 <i>10</i> 497 8 <i>10</i>		321.92 190.28	$(2,3,4)^{-}$ $(3,4)^{-}$							
713.67	(4,5) ⁺	255.76 10	40 5	457.89	(2,3,4) ⁻	(M2(+E1))	>1.0	0.08 3	$\alpha(K)=0.073\ 22;\ \alpha(L)=0.010\ 3;\ \alpha(M)=0.0018\ 6$ $\alpha(N)=0.00028\ 9;\ \alpha(O)=1.8\times10^{-5}\ 6$ Mult.: evaluators consider the multipolarity uncertain, as with $\delta(M2/E1)>1$, and with a branching ratio of $\approx 20\%$ and B(M2)(W.u.)=1 from RUL, the level half-life should be ≈ 250 ns, but no such isomer has been detected in $\gamma\gamma$ -coin data in (p.ny).			
		523.45 20	≤100	190.28	(3,4)-				// ····· ···· ··· (r),//			
		692.1 ^{<i>a</i>} 5	≤39 ¢.	21.80	$(5)^+$							
764.34	(8)+	323.3 ° 2	100 [∞] 3	441.02	(7)+	M1(+E2)	<0.9	0.0140 17	$\alpha(K)=0.0122 \ 15; \ \alpha(L)=0.00147 \ 22; \\ \alpha(M)=0.00027 \ 4 \\ \alpha(N)=4.2\times 10^{-5} \ 6; \ \alpha(Q)=2.7\times 10^{-6} \ 3 \\ \alpha(N)=4.2\times 10^{-5} \ 6; \ \alpha(Q)=2.7\times 10^{-6} \ 3 \\ \alpha(N)=4.2\times 10^{-5} \ 6; \ \alpha(Q)=2.7\times 10^{-6} \ 3 \\ \alpha(N)=4.2\times 10^{-5} \ 6; \ \alpha(Q)=2.7\times 10^{-6} \ 3 \\ \alpha(N)=4.2\times 10^{-5} \ 6; \ \alpha(Q)=2.7\times 10^{-6} \ 3 \\ \alpha(N)=4.2\times 10^{-5} \ 6; \ \alpha(Q)=2.7\times 10^{-6} \ 3 \\ \alpha(N)=4.2\times 10^{-5} \ 6; \ \alpha(Q)=2.7\times 10^{-6} \ 3 \\ \alpha(N)=4.2\times 10^{-5} \ 6; \ \alpha(Q)=2.7\times 10^{-6} \ 3 \\ \alpha(N)=4.2\times 10^{-5} \ 6; \ \alpha(Q)=2.7\times 10^{-6} \ 3 \\ \alpha(N)=4.2\times 10^{-5} \ 6; \ \alpha(Q)=2.2\times 10^{-6} \ 3 \\ \alpha(N)=4.2\times 10^{-5} \ 6; \ \alpha(Q)=2.2\times 10^{-6} \ 3 \\ \alpha(N)=4.2\times 10^{-5} \ 6; \ \alpha(Q)=2.2\times 10^{-6} \ 3 \\ \alpha(N)=4.2\times 10^{-5} \ 6; \ \alpha(Q)=2.2\times 10^{-6} \ 3 \\ \alpha(N)=4.2\times 10^{-5} \ 6; \ \alpha(Q)=2.2\times 10^{-6} \ 3 \\ \alpha(N)=4.2\times 10^{-6} \ 3 \\ \alpha($			
1018.5 1090.65	$(7,8,9)^+$ $(8)^-$	657.9 2 912.0 <i>3</i> 71.9 5	43 <i>3</i> 100	106.43 106.43 1018.5	$(7)^+$ $(7)^+$ $(7,8,9)^+$	M1,E2			<i>u</i> (11)-1.2×10 0, <i>u</i> (0)-2.7×10 5			
	x-7	325.8 7	56 <i>3</i>	764.34	(8)+	E1			δ (M2/E1)<0.25.			
		649.6 2	33 2	441.02	$(7)^+$	E1						
1102.95	$(0)^{+}$	984.3 2	100 4	106.43	$(7)^{+}$	EI			E. I from (⁶ Li Ana) only			
1102.85	(9)	996.5 <i>2</i>	2.5 100	441.02 106.43	$(7)^+$ $(7)^+$	(E2)			L_{γ} , L_{γ} : γ from (~L1,4nγ) only. Mult.: α (K)exp gives M1,E2 but $\gamma(\theta)$ consistent with E2.			
1166.34	(9)-	75.6 4	100 22	1090.65	(8)-	(D)						

7

⁹⁸₄₃Tc₅₅-7

From ENSDF

⁹⁸₄₃Tc₅₅-7

						Adopte	d Levels	, Gammas	(continued)				
	γ ⁽⁹⁸ Tc) (continued)												
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	α [@]	Comments				
1166.34	(9)-	402.00 8	31 <i>I</i>	764.34	(8)+	E1							
1207.81	(9)+	443.4 [‡] 766.6 2 1101.6 3	11 [‡] 100 7 43 6	764.34 441.02 106.43	$(8)^+$ (7) ⁺ (7) ⁺								
1254.3 1549.73	4 ⁺ ,5 ⁺ (10 ⁺)	584.1 2 341.9 <i>1</i> 447.0 2	100 100 7 24 9	670.23 1207.81 1102.85	$(9)^+$ $(9)^+$	D							
1582.44	(10)-	785.4 [‡] 416.05 8	39 [‡] 100	764.34 1166.34	$(8)^+$ $(9)^-$ $(8)^-$	M1(+E2)	<0.6						
1851.39	(11)-	268.9 <i>1</i>	4.14 100 <i>4</i>	1582.44	(8) $(10)^{-}$	M1(+E2)	<1.2	0.025 6	α (K)=0.022 5; α (L)=0.0027 7; α (M)=0.00049 13 α (N)=7.6×10 ⁻⁵ 19; α (O)=4.6×10 ⁻⁶ 8				
1920.3	(10 ⁻)	685.3 2 754.1 <i>4</i> 829.9 [‡]	74 <i>4</i> 100 25 [‡]	1166.34 1166.34 1090.65	$(9)^{-}$ $(9)^{-}$ $(8)^{-}$	(E2)			Mult.: $\alpha(K)$ exp gives M1,E2 but $\gamma(\theta)$ data consistent with E2.				
1962.7	(11^{+})	413.0 [‡]	100‡	1549.73	(10^{+})								
1995.7	(11^{+})	892.7 4	100	1102.85	(9)+	(Q)							
2303.83	$(12)^{-}$	452.5 2	100 14	1851.39	$(11)^{-}$	M1(+E2)	<1.4						
2268.0	(11-)	/21.2 5	53.0	1582.44	(10)				I_{γ} : 36 in (°L1,4n γ).				
2308.0	(11)	$518.3^{\ddagger a}$ 785.4 4	<3 [‡] 100	1920.3 1851.39 1582.44	(10^{-}) $(11)^{-}$ $(10)^{-}$								
2481.6	(12 ⁺)	485.2 [‡] 932.1 5	17 [‡] 100	1995.7 1549.73	(11^+) (10^+)								
2670.5	(12 ⁻)	302.3 [‡]	50 [‡]	2368.0	(11 ⁻)								
		750.54	100	1920.3	(10 ⁻)								
		819.7 ^{+<i>a</i>}	17+	1851.39	(11) ⁻								
2677.2	(12)-	1088.7 + <i>a</i>	58 +	1582.44	$(10)^{-}$		0.0						
2677.3	(13)	373.5 1 825.8 ^{&} 4	33 100 ^{&}	2303.83 1851.39	(12) $(11)^{-}$	M1(+E2)	<0.8		I_{γ} : from (°L1,4n γ). I_{γ} : from (°L1,4n γ). In (⁷ Li,3n γ), undivided intensity is given for 825.8 doublet.				
2810.4	(13 ⁺)	328.8 <i>3</i>	100	2481.6	(12^{+})								
3055.3	(13^{+})	1059.6 5	100	1995.7	(11^+)								
3129.5	(14 ⁻)	452.0 <i>3</i> 825.8 ^{&} 4	67 100 ^{&}	2677.3 2303.83	$(13)^{-}$ $(12)^{-}$				I_{γ} : from (°L1,4n γ). I_{γ} : from (⁶ Li,4n γ). In (⁷ Li,3n γ), undivided intensity is given for 825.8 doublet.				
3265.6	(13 ⁻)	595.2 [‡]	<100 [‡]	2670.5	(12 ⁻)								
	. /	897.5 [‡]	100 [‡]	2368.0	(11 ⁻)								

 ∞

From ENSDF

⁹⁸Tc₅₅-8

L

⁹⁸₄₃Tc₅₅-8

$\gamma(^{98}\text{Tc})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}
3724.3	(15 ⁻)	594.5 [‡] 1047.3 [‡]	22 [‡] 100 [‡]	3129.5 2677.3	(14 ⁻) (13) ⁻

 † From (p,n $\gamma)$ up to 714 level and from ($^{7}\text{Li},3n\gamma)$ above that, unless otherwise noted.

[‡] γ from (⁶Li,4n γ) only. [#] From ce data in (p,n γ) or (⁷Li,3n γ).

^(a) Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[&] Multiply placed with intensity suitably divided.

^{*a*} Placement of transition in the level scheme is uncertain.

98 43 Tc₅₅

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{98}_{43}{
m Tc}_{55}$

⁹⁸₄₃Tc₅₅

 $^{98}_{43}{
m Tc}_{55}$