99Tc(p,d) 1977Em02,1976Sl06

History

Type Author Citation Literature Cutoff Date
Full Evaluation Jun Chen, Balraj Singh NDS 164, 1 (2020) 15-Feb-2020

 $J^{\pi}(^{99}\text{Tc g.s.})=9/2^{+}$.

1977Em02: E=22.9 MeV proton beam was produced from the University of Colorado 1.3-m AVF cyclotron. Target was about $140\mu g/cm^2$ thick 99.8% pure 99 Tc on a 50 $\mu g/cm^2$ carbon backing. Deuterons were detected with a 100-cm position-sensitive helical cathode proportional counter (FWHM=15 keV) backed by a plastic scintillator. Measured $\sigma(\theta)$ from 5° to 60°. Deduced levels, J, π , L-transfers, spectroscopic factors from DWBA analysis. Comparisons with available data and shell- model calculations. Absolute cross sections accurate to $\approx 25\%$. See also 1977EmZX from the same group.

1976SI06: E=19 MeV proton beam was produced from the injector-tandem accelerator at the University of Oxford. Target was about $200~\mu g/cm^2$ metallic 99 Tc on a thin carbon backing. Reaction products were momentum-analyzed with 24 broad-range magnetic spectrographs of the Browne-Beuchner type and detected with nuclear emulsions. Measured $\sigma(\theta)$ from 26° to 169°. Deduced levels, J, π , L-transfers, spectroscopic factors from DWBA analysis. Comparisons with available data. Measured differential cross sections are accurate to within 10%. Also report data on 99 Tc(d,t).

Q value= $-6755 \ 9 \ (1977 \text{Em} \ 02)$.

All data are from 1977Em02, unless otherwise noted.

⁹⁸Tc Levels

Spectroscopic factor C^2S is defined by $(d\sigma/d\Omega)(exp)=2.29/(2j+1)\times C^2S\times(d\sigma/d\Omega)(DWBA)$, where j is the total angular momentum of transferred particle (1977Em02,1976S106).

E(level) [†]	$J^{\pi \#}$	L ^a	C^2S^a	Comments
0	$(5,6)^{+}$ @	2	0.48	C ² S: other: 0.497 (1976Sl06).
22.0 5	$(5,6)^{+}$ @	2	0.62	C^2S : other: 0.603 (1976Sl06).
65.0 <i>15</i>	$(3,4)^{+}$ @	2	0.39	C^2S : other: 0.422 (1976Sl06).
78.5 15	$(3,4)^{+}$ @	2	0.39	C ² S: other: 0.399 (1976Sl06).
107.0 10	$(7)^{+}$ @	2	0.93	C ² S: other: 0.933 (1976Sl06).
142.0 10	()	2	0.077,0.097	C^2S : other: 0.106 (1976Sl06).
204.0 15		0+2	0.030	C ² S: 0.080, 0.10 for L=2 (1977Em02). Others: 0.022 for L=0 and 0.089 for L=2 in 1976S106.
269.0 <i>30</i>		0+2	0.003	C ² S: 0.01, 0.012 for L=2. Other: 0.022 for L=2 (1976Sl06). L: 2 from 1976Sl06.
305.5 10		(4)	0.055,0.085	C ² S: other: 0.088 (1976Sl06). L: 4 from 1976Sl06.
329.5 10		2	0.087,0.11	C^2S : other: 0.081 (1976Sl06).
348.0 <i>10</i>		2	0.083,0.11	C^2S : other: 0.082 (1976S106).
391.0 <i>10</i>	$(2)^{+}$ @	2	0.044	C^2S : other: 0.031 (1976Sl06).
423.5 15		0+2	0.067	C ² S: 0.051, 0.063 for L=2. Others: 0.045 for L=0 and 0.078 for L=2 in (1976S106).
447.0 25		4(+2)	0.30,0.46	L , C^2S : 1976S106 give L =0+2 for a 456 group, with C^2S =0.005 and 0.033 for L =0 and 2, respectively.
537.5 20		2	0.027,0.034	$L,C^2S: 1976S106$ give $L=0+2$ for a 541 group, with $C^2S=0.006$ and 0.037 for $L=0$ and 2, respectively.
568 [‡] 4		(2)	0.005,0.006	
609.5 <i>15</i>		0+2	0.025	C^2S : 0.031, 0.041 for L=2. Others: 0.024 for L=0 and 0.040 for L=2 in 1976S106.
624.5 25		(2+0)	0.078,0.097	L: 1976Sl06 give L=2 for a 631 group, with C ² S=0.087. L=0 (1977Em02) may be due to contribution from 609 group.
639.5 25		2	0.038,0.047	C^2S : other: 0.067 (1976Sl06).
690 <i>5</i>		2(+0)	0.034,0.042	C^2S : 0.013 for L=0. Other: 0.067 for L=2 in 1976S106.
707.5 10		0+2	0.060	C^2S : 0.087, 0.11 for L=2. Others: 0.031 for l+0 and 0.106 for L=2 in (1976Sl06).

99 Tc(p,d) 1977Em02,1976Sl06 (continued)

⁹⁸Tc Levels (continued)

E(level) [†]	$J^{\pi \#}$	L ^a	C^2S^a	Comments
747.0 20		0+2	0.025	C^2S : 0.046, 0.059 for L=2. Others: 0.019 for 1+0 and 0.075 for L=2 in (1976Sl06).
766.0 20		(2+0)	0.056,0.082	$C^2S: 0.069 \text{ for } L=0.$
				L: $1976S106$ give L=2 for a 775 group, with $C^2S=0.056$.
799.5 <i>15</i>		0+2	0.020	C^2S : 0.012, 0.015 for L=2. Others: 0.011 for L=0 and 0.039 for L=2 in in 1976S106.
863.5 <i>15</i>		2	0.071,0.089	C^2S : other: 0.070 (1976Sl06).
888.5 <i>15</i>		0+2	0.015	C^2S : 0.029, 0.036 for L=2. Others: 0.016 for l+0 and 0.030 for L=2 in (1976Sl06).
923.5 25		2	0.015,0.018	σ ² 0 0.015 0.010 C I 2
951.5 25		0+2	0.003	C^2S : 0.015, 0.018 for L=2.
988? [‡] 4	&			
1015 4	œ	4	0.074,0.11	E(I I) 1050
1048 4		2	0.027,0.034	E(level): 1058 group (L=2) in 1976Sl06 most likely is the 1048 state. C ² S: other: 0.031 (1976Sl06).
1057.5 25	&	4	0.14,0.22	C S. Other. 0.031 (19708100).
	&			
1099.5 25 1126.5 <i>10</i>		4 2	0.14,0.22 0.041,0.051	C^2S : other: 0.034 (1976Sl06).
1120.3 10		2	0.041,0.031	L,C ² S: 1976Sl06 give L=0+2 for 1 1164 group, with C^2 S=0.011 for L=0 and 0.032 for
1137.3 10		2	0.037,0.043	L=2.
1201.5 10	&	4	0.151,0.23	
1212.0 25		2	0.065,0.082	C^2S : other: 0.0064(1976S106).
1252.5 30		0+2	0.010	C^2S : 0.016, 0.020 for L=2.
1275 4		0+2	0.014	C^2S : 0.015, 0.019 for L=2. Others: 0.012 for L=0 and 0.038 for L=2 in 1976Sl06.
1296 <i>4</i>		0+2	0.007	$C^2S: 0.039, 0.048 \text{ for } L=2.$
1310.5 30		0+2	0.045	C^2S : 0.040, 0.050 for L=2. Others: 0.015 for L=0 and L-0.040 for L=2 in 1976Sl06.
1338.0 [‡] 20		0+2	0.016	C^2S : 0.008, 0.010 for L=2.
1354 [‡] 4		2(+0)	0.008,0.010	$C^2S: 0.008 \text{ for } L=0.$
1373? [‡] <i>5</i>				
1388 [‡] 4		(2)	0.013,0.016	
1399.5 [‡] <i>30</i>		2	0.017,0.021	
1441 [‡] 6		2	0.011,0.013	
1470.5 [‡] <i>15</i>		2(+0)	0.019,0.024	
1486.5 [‡] <i>30</i>		2	0.015,0.017	

[†] From 1977Em02. The measurements of 1976S106 support the results with lower precision (uncertainty=5 keV). Above 400 keV, the level energies of 1976Sl06 seem to be shifted upwards by 5 to 10 keV.

[‡] Reported by 1977Em02 only.

[#] Tentative assignments by 1977Em02 based on 2J+1 intensity rule for low-lying levels of small configuration mixing or seniority mixing. The parity is from $(-1)^{L}$. In general $J^{\pi}=2^{+}$ to 7^{+} (L=2), 4^{+} or 5^{+} (L=0+2), 0^{+} to 9^{+} (L=4). @ Member of configuration= $\pi g_{9/2}^{3}$ $_{9/2}\otimes vd_{5/2}^{-1}$, $J^{\pi}=2^{+}$ to 7^{+} .

[&]amp; Pure L=4 members (no mixing with L=0 or L=2) are probable 0^+ , 1^+ , 8^+ , 9^+ members of configuration= $vg_{7/2}^{-1} \otimes vg_{7/2}$.

^a From DWBA analysis of measured $\sigma(\theta)$ (1977Em02). For levels with no J^{π} assignment, the first value of C²S is for L+1/2 transfer, and the second for L-1/2 transfer. For mixed transfers, value is for the first L transfer. Values for the second L transfer if available are given under comments for L+1/2 and L-1/2, respectively. Values of C²S and L-transfers, if different from 1976Sl06, are also given under comments.