⁹⁷Mo(p,n) IAR **1966Mo06,1971Ki06**

History				
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	Jun Chen, Balraj Singh	NDS 164, 1 (2020)	15-Feb-2020	

1966Mo06: E=4-9 MeV proton beams were produced from the tandem Van de Graaff accelerator at Florida State University. Target was metal oxide layers of enriched ⁹⁷Mo on a carbon backing. Neutrons were detected in a Hanson-Mckibben BF₃ counter. Measured $\sigma(E_p)$. Deduced resonances. 12 proton groups analyzed.

1971Ki06: E=3.5-4.4 MeV proton beams were produced from the 6-MV Van de Graaff accelerator. Measured neutrons with the time-of-flight spectroscopy. Deduced resonance energies, widths. 2 proton groups analyzed, corresponding to IAR of g.s. and first 2⁺ state of ⁹⁸Mo.

Others:

1975Gr01: E=16,18,20 MeV. g.s. analog.

1974Po11: E=16-26 MeV. Measured $\sigma(\theta)$.

Data are from 1966Mo06, unless otherwise noted.

⁹⁸Tc Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
9656	(0+)	E(p)(c.m.)=3480 (1966Mo06), 3505 10 (1971Ki06). IAR of 0 ⁺ , g.s. in ⁹⁸ Mo. Γ=25 keV 3 (1971Ki06).
10416	(0^+)	E(p)(c.m.)=4240. IAR of 0 ⁺ , 735 in ⁹⁸ Mo.
10476	(2 ⁺)	E(p)(c.m.)=4300 (1966Mo06), 4330 10 (1971Ki06). IAR of 2 ⁺ , 787 in ⁹⁸ Mo. Γ=34 keV 2 (1971Ki06).
11106	(2^{+})	E(p)(c.m.)=4930. IAR of 2 ⁺ , 1432 in ⁹⁸ Mo.
11433	(2^{+})	E(p)(c.m.)=5257. IAR of 2 ⁺ , 1759 in ⁹⁸ Mo.
11896		E(p)(c.m.)=5720. IAR of 2 ⁺ , 2207 and/or 4 ⁺ , 2224 in ⁹⁸ Mo.
11996		E(p)(c.m.)=5820. IAR of 2 ⁺ , 2333 and/or (6 ⁺), 2344 in ⁹⁸ Mo.
12216		E(p)(c.m.)=6040.
12326		E(p)(c.m.)=6150.
12433		E(p)(c.m.)=6257.
12616		E(p)(c.m.)=6440.
12656		E(p)(c.m.) = 6480.

[†] E(level)=E(p)(c.m.)+S(p), with S(p)=6176 3 (2017Wa10). E(p)(c.m.) data are from 1966Mo06. Uncertainty is estimated as ≈ 10 keV.

[‡] From IAR levels in ⁹⁸Mo (see ⁹⁸Mo Adopted Levels).