⁹⁶Zr(⁶Li,4nγ) **2010Di09**

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Jun Chen, Balraj Singh	NDS 164, 1 (2020)	15-Feb-2020				

2010Di09: E=35 MeV. Measured E γ , $\gamma\gamma$, I γ and $\gamma\gamma(\theta)$ (DCO) using an array of 14 Compton-suppressed Ge detectors at the HI-13 accelerator of the China Institute of Atomic Energy. Deduced Possible chiral band structures, signature splitting and signature inversion. Details of gamma-ray data are not available.

2015Hu03: E=16-28 MeV. Measured E γ , I γ , fusion σ (E).

⁹⁸Tc Levels

E(level) [†]	J ^{π‡}	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	J ^{π‡}
0.0	6+	1103.0 [#] 3	9+	1962.6 [@] 5	(11^{+})	2809.6 [@] 5	(13 ⁺)
21.8 4	5^{+}	1166.2 ^a 3	9-	1995.7 [#] 4	(11^{+})	3055.3 [#] 5	(13 ⁺)
106.5 [#] 2	7+	1207.5 [@] 3	(9+)	2303.9 ^{&} 4	12-	3130.2 ^{&} 5	14-
441.0 2	7+	1549.6 [@] 3	(10^{+})	2368.8 ^C 4	11-	3266.3 [°] 5	13-
764.2 3	8+	1582.5 ^{&} 4	10^{-}	2480.9 [@] 4	(12^{+})	3724.7 ^a 5	15^{-}
1017.5 4		1851.4 ^a 4	11-	2671.1 ^b 4	12-		
1090.7 ^{&} 3	8-	1920.6 ^b 4	10^{-}	2677.4 ^{<i>a</i>} 4	13-		

[†] From a least-squares fit to γ -ray energies, assuming uncertainty of 0.3 keV for each γ ray.

[‡] As proposed in 2010Di09, based on previous assignments, and multipolarities deduced from DCO analysis, combined with band assignments in the present work. Note that DCO data are not given in 2010Di09. See also Adopted Levels.

[#] Band(A): Band based on 7⁺.

[@] Band(B): $\Delta J=1$ band based on (9⁺).

[&] Band(C): $\pi g_{9/2} \otimes \nu h_{11/2}, \alpha = 0.$

^{*a*} Band(c): $\pi g_{9/2} \otimes \nu h_{11/2}, \alpha = 1$.

^b Band(D): $\pi g_{9/2} \otimes v h_{11/2}, \alpha = 0$. Possible chiral doublet partner of band based on 8⁻.

^{*c*} Band(d): $\pi g_{9/2} \otimes \nu h_{11/2}, \alpha = 1$. Possible chiral doublet partner of band based on 8⁻.

Eγ	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}
73.2		1090.7	8-	1017.5		452.5	13.6	2303.9	12-	1851.4	11-
75.5		1166.2	9-	1090.7	8-	452.8	2.8	3130.2	14^{-}	2677.4	13-
106.5	100	106.5	7+	0.0	6+	485.2	0.5	2480.9	(12^{+})	1995.7	(11^{+})
268.9	23.8	1851.4	11-	1582.5	10-	491.8	1.2	1582.5	10^{-}	1090.7	8-
302.3	0.6	2671.1	12^{-}	2368.8	11-	518.3	< 0.1	2480.9	(12^{+})	1962.6	(11^{+})
323.2	38.3	764.2	8+	441.0	7+	594.5	0.2	3724.7	15-	3130.2	14-
326.5	5.9	1090.7	8-	764.2	8+	595.2	< 0.1	3266.3	13-	2671.1	12^{-}
328.7	0.6	2809.6	(13^{+})	2480.9	(12^{+})	649.7	9.5	1090.7	8-	441.0	7+
334.5	6.3	441.0	7+	106.5	7+	657.7	14.2	764.2	8+	106.5	7+
342.1	9.4	1549.6	(10^{+})	1207.5	(9+)	662.0	0.9	1103.0	9+	441.0	7+
373.5	6.5	2677.4	13-	2303.9	12-	685.2	25.7	1851.4	11-	1166.2	9-
402.0	15.0	1166.2	9-	764.2	8+	721.4	4.9	2303.9	12^{-}	1582.5	10^{-}
413.0	1.7	1962.6	(11^{+})	1549.6	(10^{+})	750.5	1.2	2671.1	12-	1920.6	10^{-}
416.3	29.2	1582.5	10-	1166.2	9-	754.4	5.6	1920.6	10^{-}	1166.2	9-
419.2	4.2	441.0	7+	21.8	5+	766.5	9.9	1207.5	(9+)	441.0	7+
441.0	68.4	441.0	7+	0.0	6+	785.4	3.7	1549.6	(10^{+})	764.2	8^{+}
443.4	1.1	1207.5	(9+)	764.2	8+	786.3	4.5	2368.8	11-	1582.5	10^{-}
446.6	1.4	1549.6	(10^{+})	1103.0	9+	819.7	0.2	2671.1	12^{-}	1851.4	11^{-}
448.2	0.9	2368.8	11-	1920.6	10-	826.0	19.7	2677.4	13-	1851.4	11-

 $\gamma(^{98}\text{Tc})$

Continued on next page (footnotes at end of table)

⁹⁶Zr(⁶Li,4nγ) **2010Di09** (continued)

$\gamma(^{98}\text{Tc})$ (continued)

Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Eγ	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$
826.3	4.2	3130.2	14-	2303.9 12-	984.2	30.2	1090.7	8-	106.5 7+
829.9	1.4	1920.6	10^{-}	1090.7 8-	996.5	36.8	1103.0	9+	106.5 7+
892.7	14.8	1995.7	(11^{+})	1103.0 9+	1047.3	0.9	3724.7	15-	2677.4 13-
897.5	0.1	3266.3	13-	2368.8 11-	1059.6	2.9	3055.3	(13^{+})	1995.7 (11 ⁺)
911.0 931.3	3.5 2.9	1017.5 2480.9	(12+)	106.5 7^+ 1549.6 $(10^+$	1088.6 [†] 1101.0	0.7 4.4	2671.1 1207.5	12 ⁻ (9 ⁺)	1582.5 10 ⁻ 106.5 7 ⁺

 † Placement of transition in the level scheme is uncertain.

98 43 Tc₅₅

⁹⁸₄₃Tc₅₅

⁹⁶Zr(⁶Li,4nγ) 2010Di09

98 43 Tc₅₅