94 **Zr**(7 **Li**,3**n** γ) **1987Bi21**

	Hi	istory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen, Balraj Singh	NDS 164, 1 (2020)	15-Feb-2020

1987Bi21 (also 1987Bi23): E=23-31 MeV ⁷Li beams were produced from the 16-MV XTU Tandem Accelerator of Laboratori Nazionali di Legnaro. Target was a 618 µg/cm² self-supporting ⁹⁴Zr (91.2% enriched) metal foil. γ-rays were detected with three coaxial HPGe detectors (FWHM≈2 keV at 1.33 MeV) and conversion electrons were detected with the "SPEL" spectrometer consisting of a magnetic (solenoid) transport system and a thick Si(Li) detector (FWHM=2.4 keV at 520 keV). Measured Eγ, Iγ, E(ce), I(ce), γ(excitation function), γγ-coin, γ anisotropies (θ=0°,90°). Deduced levels, J, π, conversion coefficients, γ-ray multipolarities, mixing ratios. Comparisons with structure calculations using 2-quasi-particle plus rotor model.
All data are from 1987Bi21.

⁹⁸Tc Levels

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	J ^{π‡}
0.0 [@]	6+	1018.5 <i>3</i>		1582.43 [#] 18	10-	2677.4 [#] 3	13-
21.82 [@] 21	5+	1090.65 [#] 14	8-	1851.38 [#] <i>19</i>	11^{-}	2810.6 6	
106.43 [@] 6	7+	1102.84 [@] 17	9+	1920.4? 4		3055.2 [@] 7	
346.93 12	(6)	1166.33 [#] 16	9-	1995.5 [@] 5	(11^{+})	3129.5 [#] 4	(14 ⁻)
441.02 [@] 6	7+	1207.82 16		2303.8 [#] 3	12-		
670.23 23		1254.3 <i>3</i>		2367.8? 5			
764.34 [@] 14	8^{+}	1549.74 <i>17</i>		2481.8 6			

[†] From a least-squares fit to γ -ray energies.

[‡] As given by 1987Bi21, based on γ -ray excitation functions and γ -ray multipolarities deduced from γ anisotropies and ce data.

[#] Band(A): $\pi g_{9/2} \otimes \nu h_{11/2}$.

[@] Seq.(B): $\pi g_{9/2} \otimes \nu(d_{5/2}, g_{7/2})$.

$\gamma(^{98}\text{Tc})$

 γ anisotropy ratio R=I $\gamma(90^\circ)$ /I $\gamma(0^\circ)$ >1.1 corresponds to Δ J=1, dipole, and <0.9 to Δ J=2, quadrupole (1987Bi21).

Ν

Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	$\delta^{@}$	α ^{&}	Comments
71.9 [‡] 5 75.6 4	46 10	1090.65 1166.33	8- 9-	1018.5 1090.65	8-	(D)			E_{γ}, I_{γ} : weak γ ray. I_{γ} : other: 38 10 at 0°. R=1.2.4
106.46 <i>6</i>	100 15	106.43	7+	0.0	6+	D			I_{γ} : other: 57 5 at 0°. R=1.75 30.
^x 229 240.5 <i>1</i>	9.6 4	346.93	(6)	106.43	7+	D			In coin with 996γ . I _y : other: 7.6 4 at 0°. R=1.26 9
268.9 <i>1</i>	21.0 9	1851.38	11-	1582.43	10-	M1(+E2)	<1.2	0.025 6	$\alpha(K)\exp=0.0207 \ 46$ $\alpha(K)=0.022 \ 5; \ \alpha(L)=0.0027 \ 7; \ \alpha(M)=0.00049 \ 13$ $\alpha(N)=7.6\times10^{-5} \ 19; \ \alpha(O)=4.6\times10^{-6} \ 8$ I _{\gamma} : other: 16.4 5 at 0°. R=1.28 7.
323.3 ^b 2	≈4 b	670.23		346.93	(6)				
323.3 ^b 2	34 ^b 1	764.34	8+	441.02	7+	M1(+E2)	<0.9	0.0140 <i>17</i>	α (K)exp=0.0117 <i>19</i> α (K)=0.0122 <i>15</i> ; α (L)=0.00147 22; α (M)=0.00027 <i>4</i> α (N)=4.2×10 ⁻⁵ 6; α (O)=2.7×10 ⁻⁶ 3 L: total 1z=38 1 <i>12</i> about 10% is estimated to deexcite 670 level
325.8 7	16.0 8	1090.65	8-	764.34	8+	E1		0.00468	$\alpha(K)\exp=0.0046\ 18$ $\alpha(K)=0.00412\ 7;\ \alpha(L)=0.000468\ 7;\ \alpha(M)=8.44\times10^{-5}\ 13$ $\alpha(N)=1.336\times10^{-5}\ 21;\ \alpha(O)=8.68\times10^{-7}\ 13$ $\delta(M2/E1)<0.25\ from\ \alpha(K)exp.$
328.8 <i>3</i>	2.7 8	2810.6		2481.8					
334.6 1	5.3 6	441.02	7+	106.43	7+	D			I_{γ} : other: 4.6 4 at 0°. R=1 15 17
341.9 <i>I</i>	9.1 6	1549.74		1207.82		D			I_{γ} : other: 5.7 5 at 0°. R=1.60 18.
373.5 1	6.2 5	2677.4	13-	2303.8	12-	M1(+E2)	<0.8	0.0093 8	α (K)exp=0.0071 <i>16</i> α (K)=0.0082 <i>7</i> ; α (L)=0.00097 <i>10</i> ; α (M)=0.000175 <i>18</i> α (N)=2.8×10 ⁻⁵ <i>3</i> ; α (O)=1.80×10 ⁻⁶ <i>12</i> I _{γ} : other: 4.0 <i>6</i> at 0°. R=1 55 26
402.00 8	14.4 6	1166.33	9-	764.34	8+	E1		0.00271	$\begin{aligned} &\alpha(K) \exp = 0.0020 \ 3 \\ &\alpha(K) = 0.00238 \ 4; \ \alpha(L) = 0.000270 \ 4; \ \alpha(M) = 4.87 \times 10^{-5} \ 7 \\ &\alpha(N) = 7.72 \times 10^{-6} \ 11; \ \alpha(O) = 5.06 \times 10^{-7} \ 7 \\ &I_{\gamma}: \ other: \ 9.1 \ 13 \ at \ 0^{\circ}. \\ &R = 1.58 \ 24. \\ &\delta(M2/E1) < 0.08 \ from \ \alpha(K) \exp. \end{aligned}$

					⁹⁴ Zr(⁷ Li,3nγ)	1987Bi21	(continued)
						$\gamma(^{93}$	³ Tc) (continued	<u>1)</u>
Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^π	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{@}$	α &	Comments
416.05 8	27.5 11	1582.43	10-	1166.33 9-	M1(+E2)	<0.6	0.0069 3	α (K)exp=0.0056 6 α (K)=0.0060 3; α (L)=0.00070 4; α (M)=0.000128 8 α (N)=2.03×10 ⁻⁵ 11; α (O)=1.34×10 ⁻⁶ 5
^x 418 419.2 2	3.8 6	441.02	7+	21.82 5+	E2		0.00860	In coin with 240 γ . α (K)exp=0.0103 <i>19</i> α (K)=0.00748 <i>11</i> ; α (L)=0.000929 <i>13</i> ; α (M)=0.0001687 <i>24</i> α (N)=2.64 \times 10 ⁻⁵ <i>4</i> : α (O)=1.577 \times 10 ⁻⁶ <i>23</i>
440.99 6	62.1 <i>18</i>	441.02	7+	0.0 6+	M1(+E2)	<0.4	0.00585 14	$\begin{array}{l} \alpha(N)=2.04\times10^{-4}, \ \alpha(O)=1.377\times10^{-2.5}\\ \alpha(K)\exp=0.0047 \ 4\\ \alpha(K)=0.00513 \ 12; \ \alpha(L)=0.000593 \ 17; \ \alpha(M)=0.000107 \ 3\\ \alpha(N)=1.71\times10^{-5} \ 5; \ \alpha(O)=1.140\times10^{-6} \ 23\\ I_{\gamma}: \ \text{other:} \ 45.3 \ 13 \ \text{at} \ 0^{\circ}.\\ R=1.37 \ 6. \end{array}$
447.0 2	2.2 8	1549.74		1102.84 9+				
452.0 [‡] 3	3.5 [‡] 20	3129.5	(14 ⁻)	2677.4 13-				
452.5 [‡] 2	14.0 [‡] 20	2303.8	12-	1851.38 11-	M1(+E2)	<1.4	0.0059 5	α (K)exp=0.0048 7 α (K)=0.0051 4; α (L)=0.00060 7; α (M)=0.000109 12 α (N)=1.73×10 ⁻⁵ 17; α (Q)=1.12×10 ⁻⁶ 7
584.1 2	1.3 7	1254.3		670.23				
649.6 2	9.4 6	1090.65	8-	441.02 7+	E1		8.62×10 ⁻⁴	$\begin{aligned} &\alpha(\text{K}) \exp < 0.0011 \\ &\alpha(\text{K}) = 0.000759 \ 11; \ \alpha(\text{L}) = 8.52 \times 10^{-5} \ 12; \ \alpha(\text{M}) = 1.537 \times 10^{-5} \ 22 \\ &\alpha(\text{N}) = 2.44 \times 10^{-6} \ 4; \ \alpha(\text{O}) = 1.633 \times 10^{-7} \ 23 \\ &\text{I}_{\gamma}: \text{ other: } 5.6 \ 9 \text{ at } 0^{\circ}. \\ &\text{R} = 1.68 \ 29. \\ &\delta(\text{M2/E1}) < 0.27 \ \text{from } \alpha(\text{K}) \exp. \end{aligned}$
657.9 [‡] 2	14.5 9	764.34	8+	106.43 7+	M1,E2		0.00228 6	$\alpha(K)\exp=0.0017 \ 3$ $\alpha(K)=0.00200 \ 5; \ \alpha(L)=0.000232 \ 10; \ \alpha(M)=4.19\times10^{-5} \ 18$ $\alpha(N)=6.66\times10^{-6} \ 25; \ \alpha(O)=4.38\times10^{-7} \ 7$ I_{γ} : contribution from 658.3 γ (in ⁹⁷ Mo) is estimated as 7.5 15 at 90°. Other: 7.8 10 for the doublet at 0°. Mult.: either M1 or E2 is possible from $\alpha(K)\exp$. 1987Bi21 assigned M1(+E2). In coin with 240 γ and 323 γ
685.3 2	15.6 8	1851.38	11-	1166.33 9-	(E2)		0.00209	
721.2 5 754.1 ^c 4	7.4 8 9.4 <i>13</i>	2303.8 1920.4?	12-	1582.43 10 ⁻ 1166.33 9 ⁻				

From ENSDF

L

					⁹⁴ Zr(⁷ Li	i ,3n γ) 198 7	Bi21 (continued)
						$\gamma(^{98}\text{Tc})$ (con	tinued)
Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	α &	Comments
766.6 2 785.4 ^c 4	16.0 <i>11</i> 7.1 <i>12</i>	1207.82 2367.8?		441.02 7 ⁺ 1582.43 10 ⁻			
825.8 ^{a‡c} 4	39.3 ^a 14	2677.4	13-	1851.38 11-			
825.8 ^{<i>a</i>‡} 4 892.7 4	39.3 ^{<i>a</i>} 14 11.2 8	3129.5 1995.5	(14 ⁻) (11 ⁺)	2303.8 12 ⁻ 1102.84 9 ⁺	(Q)		I_{γ} : other: 12.1 <i>17</i> at 0°.
912.0 <i>3</i> 932.1 <i>5</i>	5.5 10 4.6 5 7.6 11	1018.5 2481.8		106.43 7 ⁺ 1549.74			R=0.72 13.
984.3 2	28.5 11	1090.65	8-	106.43 7+	E1	3.65×10 ⁻⁴	$\alpha(K) \exp = 0.00026 \ 7$ $\alpha(K) = 0.000322 \ 5; \ \alpha(L) = 3.58 \times 10^{-5} \ 5; \ \alpha(M) = 6.46 \times 10^{-6} \ 9$ $\alpha(N) = 1.029 \times 10^{-6} \ 15; \ \alpha(O) = 6.95 \times 10^{-8} \ 10$ I _y : other: 19.0 22 at 0°. R=1.50 \ 18. $\delta(M2/E1) < 0.15 \ \text{from } \alpha(K) \exp n$
996.5 2	22.9 9	1102.84	9+	106.43 7+	(E2)	8.34×10 ⁻⁴	$\alpha(K) \exp[=0.00083 \ 18] \\ \alpha(K) \exp[=0.000732 \ 11; \ \alpha(L) = 8.38 \times 10^{-5} \ 12; \ \alpha(M) = 1.516 \times 10^{-5} \ 22] \\ \alpha(N) = 2.41 \times 10^{-6} \ 4; \ \alpha(O) = 1.594 \times 10^{-7} \ 23] \\ I_{\gamma}: \text{ other: } 34.9 \ 15 \text{ at } 0^{\circ}. \\ R = 0.65 \ 4. \\ \text{Mult.: } \alpha(K) \exp \text{ gives E2 or M1; } \gamma(\theta) \text{ consistent with } \Delta J = 2, \text{ quadrupole,} \end{cases}$
x1014 5 3	11.0.70						however M1 admixture cannot be ruled out. 1987Bi21 assigned E2.
1059.6 5	4.6 5	3055.2		1995.5 (11 ⁺)			in com with rooy.
1101.6.3	6.9 10	1207.82		106.43 7+			

^{\dagger} Quoted values are relative intensities measured at 90°. Values at 0° are given under comments.

[‡] From $\gamma\gamma$ -coin.

4

[#] From 1987Bi21 based on measured $\alpha(K)$ exp and/or γ anisotropies. Quoted values of $\alpha(K)$ exp are not corrected for angular distribution effect, which would increase the reported values by about 10-20% for pure E1 and by 5-8% for pure M1 and would almost have no effect on pure E2 (1987Bi21).

[@] Deduced by evaluators from $\alpha(K) \exp in 1987Bi21$.

[&] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^{*a*} Multiply placed with undivided intensity.

^b Multiply placed with intensity suitably divided.

^c Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

94 Zr(7 Li,3n γ) 1987Bi21

⁹⁸₄₃Tc₅₅

5

⁹⁴Zr(⁷Li,3nγ) 1987Bi21

⁹⁸₄₃Tc₅₅