	Hi	istory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen, Balraj Singh	NDS 164, 1 (2020)	15-Feb-2020

 $Q(\beta^{-})=5872 \ 9$; $S(n)=5913 \ 5$; $S(p)=15193 \ 4$; $Q(\alpha)=-7500 \ 13$ 2017Wa10

 $S(2n)=9642 \ 9, \ S(2p)=27921 \ 21, \ Q(\beta^{-}n)=1627 \ 7 \ (2017Wa10).$

Other measurements: 2009Ma47: 238 U(136 Xe,X γ): E=954 MeV 136 Xe beam from the PIAVE-ALPI complex at INFN. Measured E γ , I γ , $\gamma\gamma$ -coin with the CLARA array and reaction products with the PRISMA spectrometer. Report 145γ , 289γ and 433γ .

Mass measurements: 2016K104, 2012Si10 (Penning-trap mass spectrometer TITAN at ISAC-TRIUMF facility), 2006Ha03 (Penning trap spectrometer at Jyvaskyla facility).

Hyperfine structure studies for the g.s.: 1990Bu12, 1988Si06.

Measurements of rms charge radii: 1996Li25, 1992Ne09.

Theory references: consult the NSR database (www.nndc.bnl.gov/nsr/) for 52 primary references, 43 dealing with nuclear structure calculations and 9 with decay modes and half-lives.

Additional information 1.

98Sr Levels

Cross Reference (XREF) Flags

			A B C D E	98 Rb β ⁻ decay (115 ms) F 252 Cf SF decay 98 Rb β ⁻ decay (96 ms) G 7 Li(98 Rb, $\alpha 3n\gamma$) 99 Rb β ⁻ n decay (57.8 ms) H 235 U(n,F γ) 100 Rb β ⁻ 2n decay (52 ms) I Coulomb excitation 248 Cm SF decay 248 Cm SF decay
E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF	Comments
0.0 [‡]	0+	0.653 s 2	ABCDEFGHI	 %β⁻=100; %β⁻n=0.23 3 Evaluated rms charge radius=4.438 fm 22 (2013An02). Evaluated δ<r<sup>2>(⁸⁸Sr,⁹⁸Sr)=1.656 fm² 6 (2013An02).</r<sup> T_{1/2}: weighted average of 0.652 s 3 (2017Ur03, weighted average of 0.650 s 5 from decay curves for 428.6- and 444.7-keV γ rays, and 0.652 s 3 from decay curve for 119.3-keV γ ray; note that 2017Ur03 list 0.651 s 2 in their summary Table II), and 0.653 s 2 (1986ReZU). Others, with much less precision: 0.640 s 20(syst) 35(stat) from maximum likelihood method (MLH), 0.577 s 1(syst) 30(stat) from least-squares fit method (2012Qu01), 0.650 s 40 (1987PfZX), 0.645 s 50 (1982Ga24), 0.7 s 1 (1981En05), 0.6 s 1 (1979En02), 0.66 s 7 (1978Wo09), 1.04 s 11 (1976AmZW), 0.845 s 43 (1971Tr02,1970KIZZ). %β⁻n: weighted average of 0.23 3 (1993Ru01) and 0.23 5 (1986ReZU, earlier values of 0.23 2 in 1986Wa17 and 0.18 2 in 1983Re10). Others: 0.36 11 (1981En05), 0.8 2 (1987PfZX,1982Ga24). Δ<r<sup>2>(⁹⁷Sr-⁹⁸Sr)=0.578 fm² 9 (1996Li25).</r<sup>
144.70 [‡] 5	2+	2.78 ns 8	ABCDEFGHI	$\begin{array}{l} \mu = 0.76 \ 14 \ (1989 Wo05, 2014 StZZ) \\ Q = -0.52 \ 24 \ (2016 Ct01) \\ J^{\pi}: \ 144.2\gamma \ E2 \ to \ 0^+. \\ T_{1/2}: \ weighted average of 2.77 \ ns \ 14 \ in \ (n, F\gamma) \ (\gamma\gamma(t), 2017 Re05), \ 2.80 \ ns \ 8 \\ \ (\beta\gamma(t), 1989 Ma47, 1989 Ma38) \ and \ 2.74 \ ns \ 12 \ (\gamma\gamma(t), 1987 Oh05) \ in \ ^{98} Rb \ \beta^- \ decay. \\ Others: \ 4 \ ns \ 1 \ (\beta(ce)(t), \ 1980 Sc13); \ 3.6 \ ns \ 4 \ (\beta(ce)(t), \ 1979 Az01) \ in \ ^{98} Rb \ \beta^- \ decay. \\ Others: \ 4 \ ns \ 1.6 \ (\beta(ce)(t), \ 1980 Sc13); \ 3.6 \ ns \ 4 \ (\beta(ce)(t), \ 1979 Az01) \ in \ ^{98} Rb \ \beta^- \ decay. \\ Others: \ 4 \ ns \ 1.6 \ (\beta(ce)(t), \ 1980 Sc13); \ 3.6 \ ns \ 4 \ (\beta(ce)(t), \ 1979 Az01) \ in \ ^{98} Rb \ \beta^- \ decay. \\ Others: \ 4 \ ns \ 1.6 \ (\beta(ce)(t), \ 1980 Sc13); \ 3.6 \ ns \ 4 \ (\beta(ce)(t), \ 1979 Az01) \ in \ ^{98} Rb \ \beta^- \ decay. \\ Others: \ 4 \ ns \ 1.6 \ (\beta(ce)(t), \ 1980 Sc13); \ 3.6 \ ns \ 4 \ (\beta(ce)(t), \ 1979 Az01) \ in \ ^{98} Rb \ \beta^- \ decay. \\ Others: \ 4 \ ns \ 1.6 \ (\beta(ce)(t), \ 1980 Sc13); \ 3.6 \ ns \ 4 \ (\beta(ce)(t), \ 1979 Az01) \ in \ ^{98} Rb \ \beta^- \ decay. \\ Others: \ 4 \ ns \ 1.6 \ (\beta(ce)(t), \ 1980 Sc13); \ 3.6 \ ns \ 4 \ (\beta(ce)(t), \ 1979 Az01) \ in \ ^{98} Rb \ \beta^- \ decay. \\ Others: \ 4 \ ns \ 4.6 \ (\beta(ce)(t), \ 1980 Sc13); \ 3.6 \ ns \ 4 \ (\beta(ce)(t), \ 1979 Az01) \ in \ ^{98} Rb \ \beta^- \ decay. \\ Others: \ 4 \ ns \ 4.6 \ (\beta(ce)(t), \ 1980 Sc13); \ 3.6 \ ns \ 4 \ (\beta(ce)(t), \ 1970 Sc13); \ 5.6 \ (\beta(ce)(t), \ 1980 Sc13); \ 5.6 \ (\beta(ce$

Continued on next page (footnotes at end of table)

⁹⁸Sr Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
215.64 [#] 10	0+	22.9 ns 17	ABC EF I	J ^π : 71.0γ E2 to 2 ⁺ . T _{1/2} : weighted average of 21.2 ns 17 (γγ(t),2002Lh01), 25 ns 2 (β-ce(t),1980Sc13), and 23 ns 2 (β-ce(t),1979Az01) in ⁹⁸ Rb β ⁻ decay.
434.07 [‡] 7	4+	82 ps 6	BC EFGHI	Q=-1.87 +14-25 (2016Cl01) J^{π} : 289.3 γ E2 to 2 ⁺ and $\gamma\gamma(\theta)$ in ⁹⁸ Rb β^- decay. T _{1/2} : weighted average of 80 ps 6 from $\beta\gamma\gamma(t)$ in ⁹⁸ Rb β^- decay (1989Ma47) and 83.9 ps 76 from $\gamma\gamma(t)$ in (n,F γ). Q: from reorientation method in Coulomb excitation (2016Cl01).
867.37 [‡] 9	6+	7.86 ps 24	B EFGHI	 Q=-1.21 +39-16 (2016Cl01) J^π: γγ(θ) in ⁹⁸Rb β⁻ decay consistent with J=6; negative parity is ruled out since it would require an unreasonably large B(M2) value for 433.2γ; member of g.s. band. T_{1/2}: weighted average of 11 ps 6 from γγ(t) in (n,Fγ) and 7.86 ps 24 from B(E2) of 433.2γ in Coulomb excitation. Q: from reorientation method in Coul. ex. (2016Cl01).
871.34 [#] <i>12</i>	(2+)	8.6 ps 14	ABC EF I	Q=+0.02 +13-12 (2016Cl01) J ^{π} : 655.8 γ and 871.4 γ to 0 ⁺ ; possible γ to 4 ⁺ . T _{1/2} : from B(E2) value of 655.8 γ in Coulomb excitation. Q: from reorientation method in Coulomb excitation (2016Cl01).
1224.4 3	$(0^+, 1)$		A C	J^{π} : 1079.7 γ to 2 ⁺ ; possible β^- feeding from 0 ⁽⁻⁾ .
1433.65 [‡] <i>13</i>	8+	2.97 ps 48	EF HI	Q=-0.95 + 74-88 (2016Cl01) J^{π} : 566 γ to 6 ⁺ ; member of g.s. band.
				$T_{1/2}$: from Doppler-profile method (1996Sm04) in ²⁴⁸ Cm SF decay.
1539 42 16	(2^{+})		AR	Q: from reorientation method in Coulomb excitation (2010C101). I^{π} : 1539.2 γ and 1323.9 γ to 0 ⁺ : 1105.5 γ to 4 ⁺
1600.69 14	(2^+)		AB	J^{π} : $\gamma\gamma(\theta)$ consistent with J=2; 1167.1 γ to 4 ⁺ and possible 1600.4 γ to 0 ⁺ .
1681.45 [#] 18 1745.3? 4	(4 ⁺)		B E AB	J^{π} : 810.4 γ to (2 ⁺); band member.
1837.94 [@] 15	(3 ⁺)	7.5 ns 15	AB EF	J ^{π} : from re-analysis by 2002PfZX of $\gamma\gamma(\theta)$ data in 1984Be50 with a configuration= $\nu9/2[404] \otimes \nu3/2[411]$, $K^{\pi}=3^+$; also proposed by 2002Lh01 based on arguments of hindrances of γ transitions, β feedings and band head of a possible K=3 band. Note that 1984Be50 give J=2 based on their $\gamma\gamma(\theta)$ data and a 1837 γ to 0 ⁺ ground state. But the 1837 γ was not observed by 2002Lh01. It is also pointed out by 2002Lh01 that J=3 cannot be rejected by $\gamma\gamma(\theta)$ of the 1693-144 cascade in 1984Be50.
				T _{1/2} : weighted average of 13 ns 3 from γ (t) in ²⁵² Cf SF decay (2004Li66) and 7.1 ns 8 from $\gamma\gamma$ (t) in ⁹⁸ Rb β^- decay (2002Lh01).
1922.4? 4	$(1, 2^{+})$		AB	π_{-10105} , π_{-2}^{+} and $\pi_{}^{}$ in 10041 (0^{+}
$1904.10\ 20$	$(1,2^{+})$		AB	J [*] : 1819.57 to 2 ⁺ and possible 1964.17 to 0 ⁺ .
1978.33 - 17	(4)		D EF	assignment; 1544.5 γ to 4 ⁺ and 140.6 γ to (3 ⁺); possible β^- feeding from (3 ⁺); possible 1111 γ to 6 ⁺ .
2043.1 10			E	
2123.15 [‡] 24	10^{+}	1.07 ps 17	EF I	J^{π} : 689.6 γ to 8 ⁺ ; member of g.s. band.
2124.23 13	(1 ⁺ to 4 ⁺)		AB	T _{1/2} : trom Doppler-profile method (1996Sm04) in ²⁴⁶ Cm SF decay. J ^π : 1979.6γ to 2 ⁺ and 286.2γ to (3 ⁺). 2002Lh01 in ⁹⁸ Rb β ⁻ decay suggest (2 ⁻) from model calculation with configuration= $v9/2[404] \otimes v5/2[532]$.
2153.61 [@] 25	(5 ⁺)		B EF	J^{π} : 1719.5 γ to 4 ⁺ , possible 1286.1 γ to 6 ⁺ and 315.7 γ to (3 ⁺); possible band member.

Continued on next page (footnotes at end of table)

⁹⁸Sr Levels (continued)

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	Χ	REF	Comments				
2182.1 15				Е					
2206.09 20	(3)		В		J ^{π} : $\gamma\gamma(\theta)$ in ⁹⁸ Rb β^{-} decay consistent with J=3 or 5; 605.4 γ to (2 ⁺).				
2231.38 14	$(2,3,4^{+})$		В		J ^{π} : 2086.3 γ to 2 ⁺ ; possible β^{-} feeding from (3 ⁺).				
2237.6? 4			AB						
2209.27 5	(2^{+})				I^{π} : $\gamma\gamma(\theta)$ in ⁹⁸ Rb β^{-} decay consistent with I-2: 2315.8 γ to 0 ⁺ Note				
2250.14.24	$(2^+, 2, 4^+)$		D		that (2^+) is inconsistent with a possible strong β^- feeding from $0^{(-)}$ parent in ⁹⁸ Rb β^- decay (115 ms) as also given in 2002Lh01, which could imply that this level could be β^- fed mostly by the decay of (3 ⁺) isomer in ⁹⁸ Rb rather than by the decays of both parent states equally as assumed by 2002Lh01, if the (2 ⁺) assignment can be confirmed.				
2339.1424	(2, 3, 4)		D		J = 2214.77 to 2 and $1925.57 to 4$.				
2301.1 = 0 2422.22 # 15	(0^{+})			EF	J [*] : 382.9γ to (4 ⁺); possible band member.				
2432.23° 13	(0^{+})	4.5 10		E	J^{*} : 1505 γ 10 0°; 1998 γ 10 4°; band member.				
2534.3 0	(6.)	4.5 ns 10		Er	$T_{1/2}$: from $\gamma(t)$ in ²⁵² Cf SF decay (2004Li66).				
25/4.88				E					
2602.7 8	(7+)			EF	J^{*} : 241.5 γ to (6 ⁺) and 449.4 γ to (5 ⁺); possible band member.				
27/1.9 6	(7^{+})		4.D	EF	J^{n} : 1904.4 γ to 6 ⁺ and 1338.5 γ to 8 ⁺ ; possible band member.				
2818 27 18	(1,2) (7^+)		AD	F	J. possible 2004.27 to 0. I^{π} : γ rays to 6 ⁺ and 8 ⁺				
$2873.5^{@}9$	(8^+)			- FF	I^{π} : 270.8v to (7^+) and 512.3v to (6^+) : possible band member				
2899.5^{a} 10	(0)			E	$\mathbf{y} = \mathbf{z} + $				
2927.7 [‡] 4	(12^{+})	0.46 ps 7		EF	J^{π} : 804.5 γ to 10 ⁺ ; band member.				
2932.3 4	(2+,3,4)	Ĩ	В		T _{1/2} : from Doppler-profile method (1996Sm04) in ²⁴⁸ Cm SF decay. J ^{π} : 2498.2 γ to 4 ⁺ and possible β^{-} feeding from (3 ⁺). configuration= ν 3/2[411] ν 5/2[532], K^{π} =4 ⁻ proposed by 2002PfZX as an analogy with the 1619, 4 ⁻ level in ¹⁰⁰ Sr based on decay pattern and the				
					hindrance of the 2498γ .				
3041.4 ^{&} 7 3162.7 ^a 10	(8 ⁺)			EF E	J^{π} : 918.2 to 10 ⁺ and 269.3 γ to (7 ⁺); possible band member.				
3174.6 [@] 10	(9^+)			EF	J^{π} : 571.9 γ to (7 ⁺) and 301.1 γ to (8 ⁺); possible band member.				
3290.5 4	$(1,2^+)$		AB		J^{π} : possible 3290.2 γ to 0 ⁺ .				
3341.4 ^{&} 12	(9 ⁺)			EF	J^{π} : 300 γ to (8 ⁺); possible band member.				
3442.7 4	(3)		В		J^{π} : from $\gamma\gamma(\theta)$ in ⁹⁸ Rb β^{-} decay.				
3445.7 ^{<i>a</i>} 14	at n		_	E					
3462.7 4	$(2^+ \text{ to } 4)$		В		J^{n} : 3028.6 γ to 4 ⁺ ; possible β^{-} feeding from J=(3 ⁺).				
3510.7° <i>11</i>	(10^+)		۸D	F	J^{n} : γ s to (8 ⁺) and (9 ⁺); possible band member.				
3022.73	$(1,2^{+})$		AR	EE	$J \sim 5022.4\gamma = 000$.				
50/1.0~ 10	(10.)			Eľ	J^{**} , 529.07 to (9^{**}) , possible band member.				

[†] From a least-squares fit to γ-ray energies, assuming ΔEγ=1 keV when not stated.
[‡] Band(A): g.s. band Q(intrinsic)=3.40 *15* (2001Ur01). Other: 3.17 *20* (1996Sm04). Q₀ deduced from lifetime data for 8⁺, 10⁺ and 12⁺ states. Proposed configuration=vh²_{11/2} ⊗v9/2[404]⁻², prolate structure (2019Ur01).
[#] Band(B): Band based on 215.4, 0⁺. Proposed configuration=v11/2[505]² ⊗v9/2[404]⁻², oblate structure (2019Ur01).

[@] Band(C): $\nu 9/2[404] - 3/2[411], K^{\pi} = (3^+).$

[&] Band(D): $v9/2[404]+3/2[411], K^{\pi}=(6^+)$.

^{*a*} Seq.(E): γ cascade.

	Adopted Levels, Gammas (continued)										
$\underline{\gamma(^{98}\mathrm{Sr})}$											
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α [@]	$I_{(\gamma+ce)}^{\#}$	Comments		
144.70	2+	144.70 5	100	0.0 0+	E2		0.262		B(E2)(W.u.)=96 3 α (K)=0.225 4; α (L)=0.0313 5; α (M)=0.00527 8 α (N)=0.000623 9; α (O)=2.99×10 ⁻⁵ 5 E _γ : from ²⁴⁸ Cm SF decay (2019Ur01). Others: 144.5 1 (2002Lh01), 144.4 2 (1977Wo07), 144.2 (1987Ma58), 144.5 (1984Be50), 144.7 (1979Pe17), 144.6 (1980Sc13), 144.224 6 (1979Bo26, curved crystal) from ⁹⁸ Rb decay (96 ms); 144.6 3 (1982Kr11, ¹⁰⁰ Rb β ⁻ 2n decay); 144.9 (2004Li66) and 144.3 (1997Ha64) from ²⁵² Cf SF decay. Value from 197Bo26 is the most precise but seemingly discrepant, in view of higher values by ≈0.4-0.5 keV in other studies.		
215.64	0+	71.0 <i>1</i>	100	144.70 2+	E2		3.55	455 6	$\alpha(K)=2.86 5; \alpha(L)=0.579 9; \alpha(M)=0.0979 15$ $\alpha(N)=0.01098 17; \alpha(O)=0.000348 6$ B(E2)(W.u.)=62 +7-6		
434.07	4+	215.6 289.40 <i>5</i>	100	0.0 0 ⁺ 144.70 2 ⁺	E0 E2		0.0218	370 14	E _γ : from level energy difference. $\alpha(K)=0.0191 \ 3; \ \alpha(L)=0.00230 \ 4; \ \alpha(M)=0.000385 \ 6$ $\alpha(N)=4.71\times10^{-5} \ 7; \ \alpha(O)=2.70\times10^{-6} \ 4$ B(E2)(W.u.)=124 +10-9 E _γ : from ²⁴⁸ Cm SF decay (2019Ur01). Others: 289.3 1 (2002Lh01) 289.2 2 (1977Wo07) in ⁹⁸ Rb decay (96 ms) area in accement		
867.37	6+	433.30 5	100	434.07 4+	E2		0.0057		B(E2)(W.u.)=174.8 <i>18</i> E_{γ} : from ²⁴⁸ Cm SF decay (2019Ur01). Mult.: $\gamma\gamma(\theta)$ in ²⁵² Cf SF decay (2019Ur01) (see data in ²⁴⁸ Cm SF) and RUL		
871.34	(2+)	(437.7)	<9	434.07 4+	[E2]		0.0055		 B(E2)(W.u.)<12 E_γ: from level-energy difference. This transition is considered in GOSIA analysis by 2016Cl01. I_γ: deduced from B(E2) values in Coulomb excitation (by evaluators). 		
		655.8 2 726.7 <i>3</i>	100 <i>10</i> 23 <i>4</i>	215.64 0 ⁺ 144.70 2 ⁺	[E2] [M1+E2]	0.7 10	0.00168 0.00117 7		B(E2)(W.u.)=13 +5-4 B(M1)(W.u.)=0.0007 +9-5; B(E2)(W.u.)=0.6 +15-6 E_{γ} : from ²⁴⁸ Cm SF decay. δ : deduced by 2016Cl03 from B(E2) and B(M1) matrix elements, sign is unknown.		
		871.2 3	25 4	0.0 0+	[E2]				B(E2)(W.u.)= $\overline{0.8}$ +5-3 E _{γ} : average of values from ²⁴⁸ Cm SF decay and ⁹⁸ Rb decay (96 ms).		
1224.4 1433.65	$\binom{(0^+,1)}{8^+}$	1079.7 <i>3</i> 566.3 <i>1</i>	100 100	$\begin{array}{rrrr} 144.70 & 2^+ \\ 867.37 & 6^+ \end{array}$	E2		0.00255		B(E2)(W.u.)=122 +25-18		

4

From ENSDF

 ${}^{98}_{38}{
m Sr}_{60}$ -4

					Ado	pted Level	s, Gamm	as (continu	ued)	
γ (⁹⁸ Sr) (continued)										
E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [‡]	δ^{\ddagger}	α [@]	Comments	
									Mult.: $\gamma\gamma(\theta)$ in ²⁵² Cf SF decay (2019Ur01) (see data in ²⁴⁸ Cm SF) and RUL	
1539.42	(2^{+})	668.1 <i>3</i>	55 10	871.34	(2^+)					
		1105.5 3	85 15	434.07	4 ⁺ 0 ⁺					
		1525.9 5	40 15	213.04	0^{+}					
1600.69	(2^{+})	1167.1 4	73	434.07	4+					
		1455.9 <i>3</i>	100 7	144.70	2+	Q(+D)	>+1.5			
		1600.4 ^{&} 3	25 13	0.0	0^{+}					
1681.45	(4 ⁺)	810.4 4	100 50	871.34	(2^+)				All γ -ray data from the 1681 level are from ²⁴⁸ Cm SF decay.	
		1247.3 2	70 30	434.07	4+					
		1537.0 5	50 30	144.70	2*					
1745.3?	(2+)	1600.6 4	100	144.70	2+ 4+				1 - 1 + 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
1837.94	(3^{+})	1403.9 4	4.2 13	434.07	4				I_{γ} : weighted average of 3.9 13 from 5 Kb β decay (96 ms) and 6.3 from 252 Cf SE decay	
		1693 2 2	100.8	144 70	2+				L: from 98 Rb β^- decay (96 ms) and from 252 Cf SF decay	
1922.4?		$1777 7 \frac{\&}{4} 4$	100 0	144 70	2+ 2+					
1964.16	$(1,2^+)$	1092.8 3	45 7	871.34	(2 ⁺)					
		1819.5 3	100 9	144.70	2+					
		1964.1 <mark>&</mark> 4	55 14	0.0	0+					
1978.53	(4^{+})	140.6 1	100 4	1837.94	(3^+)					
		1111.0 1544 4	<1 32 7	867.37 434.07	6' Δ+					
2043.1		1609	527	434.07	4+				E_{α} : from ²⁴⁸ Cm SF decay only.	
2123.15	10^{+}	689.5 2	100	1433.65	8+	E2		0.00147	B(E2)(W.u.)=126 + 25 - 18	
									E_{γ} : from ²⁴⁸ Cm SF decay.	
									Mult.: $\gamma\gamma(\theta)$ in ²⁵² Cf SF decay (2019Ur01) (see data in	
2124.22	$(1^+ t_0 4^+)$	196 2 2	12 0	1927 04	(2^{+})				²⁴⁰ Cm SF), and RUL.	
2124.23	(1 10 4)	200.2 2 523.4 3	42 ð 42 17	1600 69	(2^+)					
		585.0 3	33 17	1539.42	(2^+)					
		1253.2 4	58 17	871.34	(2 ⁺)					
0150 51	(5+)	1979.6 3	100 25	144.70	2^+					
2153.61	(5')	175.12 315.7	59 <i>3</i> 513	1978.53	(4') (3^+)					
		1286.1	5.5	867.37	6 ⁺					
		1719.5	100 34	434.07	4+					
2182.1		139		2043.1					E_{γ} : from ²⁴⁸ Cm SF decay only.	
2206.09	(3)	605.4 2	34 6	1600.69	(2+)					
2221 20	$(2, 2, 4^{+})$	1772.0 3	100 14	434.07	4^+	D+Q			δ : +0.05 to +4.5 from $\gamma\gamma(\theta)$ in ⁹⁸ Rb β^- decay.	
2231 38	$(2.3.4^{\circ})$	107.27	/0 /	2124.23	(1' to 4')					

S

 $^{98}_{38}{
m Sr}_{60}$ -5

L

$\gamma(^{98}Sr)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [‡]	Comments
2231.38	(2,3,4 ⁺)	630.7 2 1359.8 <i>3</i> 2086.3 <i>4</i>	100 <i>10</i> 100 <i>17</i> 33 <i>10</i>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
2237.6?		2092.9 <mark>&</mark> 4	100	144.70 2+		
2289.2?		2144.5 ^{&} 3	100	144.70 2+		
2316.14	(2+)	192.1° 4 2171.5 3 2315 8 4	64 100 <i>13</i> 47.19	2124.23 (1 ⁺ to 4 ⁻ 144.70 2 ⁺ 0.0 0 ⁺	+) D+Q	δ : +0.5 to +20 from $\gamma\gamma(\theta)$ in ⁹⁸ Rb β^- decay.
2359.14	(2+,3,4+)	234.2 <i>4</i> 1925.5 <i>4</i>	44 22 100 <i>17</i>	2124.23 (1 ⁺ to 4 ⁻ 434.07 4 ⁺	+)	
2361.1	(6+)	2214.7 4 207.8 382.9	44 11 100 7 60 7	$\begin{array}{c} 144.70 & 2^{+} \\ 2153.61 & (5^{+}) \\ 1978.53 & (4^{+}) \end{array}$		
		1493 <mark>&</mark>		867.37 6+		E_{γ} : from ²⁴⁸ Cm SF decay only.
2432.23	(6+)	751.0 ^{&} 5 1564.7 2 1998.2 2	23 <i>14</i> 100 <i>18</i> 55 <i>14</i>	$\begin{array}{rrrr} 1681.45 & (4^+) \\ 867.37 & 6^+ \\ 434.07 & 4^+ \end{array}$		
2534.3	(6 ⁺)	1666.8	15 6	867.37 6+	[[20]	
2574.8		143 1707	100 19	$\begin{array}{c} 434.07 & 4^{+} \\ 2432.23 & (6^{+}) \\ 867.37 & 6^{+} \end{array}$	[E2]	B(E2)(W.u.)=0.00010 + 4 - 3
2602.7	(7 ⁺)	241.5	100 11	2361.1 (6 ⁺) 2153.61 (5 ⁺)		
2771.9	(7+)	237.6 1338.5 1904.4	28 5 6 6 100 12	$\begin{array}{c} 2133.61 & (5^{\circ}) \\ 2534.3 & (6^{+}) \\ 1433.65 & 8^{+} \\ 867.37 & 6^{+} \end{array}$		
2804.4	(1,2 ⁺)	2659.8 <mark>&</mark> 4	71 14	144.70 2+		
2818.27	(7 ⁺)	2804.2 ^{&} 4 385.9 3 1384.7 2 1950.8 3	100 24 55 27 82 27 100 27	$\begin{array}{ccc} 0.0 & 0^+ \\ 2432.23 & (6^+) \\ 1433.65 & 8^+ \\ 867.37 & 6^+ \end{array}$		
2873.5	(8+)	270.8 512.3	100 8 77 8	$\begin{array}{rrr} 2602.7 & (7^+) \\ 2361.1 & (6^+) \end{array}$		
2899.5		365		2534.3 (6 ⁺)		
2927.7	(12+)	804.5 <i>3</i>	100	2123.15 10+	[E2]	B(E2)(W.u.)=135 +25-19 E_{γ} : from ²⁴⁸ Cf SF decay (2019Ur01). Others: 812.5 (1996Sm04), 810.0 (2001Ur01) in ²⁴⁸ Cm SF decay; 805.6 (2004Li66) in ²⁵² Cf SF decay. The spread in the available E_{γ} values make the precise energy of this transition uncertain. This may be the reason 2019Ur01, in Fig. 2 of their paper place E_{γ} value and the corresponding level energy in parentheses.
2932.3	(2+,3,4)	2498.2 4	100	434.07 4+		conceptioning to ter energy in parentices.

6

 $^{98}_{38}{
m Sr}_{60}$ -6

 ${}^{98}_{38}{
m Sr}_{60}$ -6

$\gamma(^{98}Sr)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	Comments
3041.4	(8^+)	269.3	25 8	2771.9 (7 ⁺)			
		918.2	100 19	2123.15 10+			
		1607.8	<2	1433.65 8+			
3162.7		263		2899.5			
		391		2771.9 (7 ⁺)			
3174.6	(9 ⁺)	301.1	76 12	2873.5 (8 ⁺)			E_{γ} : 304 in ²⁴⁸ Cm SF decay (2004Du10).
		571.9	100 20	2602.7 (7 ⁺)			E_{γ} : 576 in ²⁴⁸ Cm SF decay (2004Du10).
3290.5	$(1,2^{+})$	3145.9 5	58 11	144.70 2+			
		3290.2 <mark>&</mark> 6	100 39	$0.0 0^+$			
3341.4	(9 ⁺)	300.0	100	3041.4 (8 ⁺)			
3442.7	(3)	3008.6 4	100	434.07 4+	D+Q	-1.8 12	Mult., δ : from $\gamma\gamma(\theta)$ in ⁹⁸ Rb β^- decay.
3445.7		283		3162.7			
3462.7	$(2^+ \text{ to } 4)$	3028.6 4	100	434.07 4+			
3510.7	(10^{+})	336.1	100 23	3174.6 (9 ⁺)			
		637.2	100 31	2873.5 (8 ⁺)			
3622.7	$(1,2^{+})$	3478.1 6	65 18	$144.70 \ 2^+$			
		3622.4 <mark>&</mark> 7	100 41	$0.0 0^+$			
3671.0	(10^{+})	329.6	100	3341.4 (9 ⁺)			

[†] Primarily from ⁹⁸Rb β^- decay with $\Delta E\gamma$ given, and from ²⁵²Cf SF decay for high-spin levels (J≥6) where no $\Delta E\gamma$ is given, unless otherwise noted. [‡] From ce data (1980Sc13) and $\gamma\gamma(\theta)$ (1984Be50) in ⁹⁸Rb β^- decay, unless otherwise noted. [#] From ⁹⁸Rb β^- decay.

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified. [&] Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{98}_{38}{
m Sr}_{60}$

8

Legend

 $--- \blacktriangleright \gamma$ Decay (Uncertain)

Level Scheme (continued)

 $^{98}_{38}{
m Sr}_{60}$

9

Legend Level Scheme (continued) Intensities: Relative photon branching from each level $--- \rightarrow \gamma$ Decay (Uncertain) $\begin{array}{c} 199\\ 199\\ 2332\\ 3$ (1⁺ to 4⁺) 2124.23 2123.15 1 154 1 32 1 1.07 ps 17 10^{+} 1600 1964 190 2043.1 °S- $\frac{(4^+)}{(1,2^+)}$ 1978.53 1964.16 1603_1 _1922.4 _ _ Ş (3^+) 1837.94 7.5 ns 15 10001 1537 - -00 1537 - -00 1247 - 0 810 - 30 810 - 10 <u>1745.3</u> Т (4^+) 1681.45 1530 133,240 105,560 08,585 155 (2^{+}) 1600.69 -100 -23 (2^{+}) 1539.42 8^+ 1433.65 2.97 ps 48 001 <⁻6<01 + $(0^+,1)$ 1224.4 07,2 26,10,125 05,601,422 05,612,100 03,5612,100 03,5712,100 871.348.6 ps 14867.377.86 ps 24 (2^+) 6^+ 434.07 82 ps 6 4+ 0^+ 215.64 22.9 ns 17 144.70 2.78 ns 8 2 ¥ ¥ 0+ 0.0 0.653 s 2

 $^{98}_{38}{
m Sr}_{60}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

⁹⁸₃₈Sr₆₀

 $^{98}_{38}{
m Sr}_{60}$