History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	Jun Chen, Balraj Singh	NDS 164, 1 (2020)	15-Feb-2020		

Parent: ⁹⁹Rb: E=0; $J^{\pi}=(3/2^+)$; $T_{1/2}=57.8$ ms 9; $Q(\beta^-n)=7231$ 5; $\%\beta^-n$ decay=19.1 18

⁹⁹Rb-T_{1/2}: Weighted average of 59 ms 4 (1978Ko29); 59 ms 4 (1979Pe01); 52 ms 5 (1983Wo10); 59 ms 1 (1986ReZU); 59 ms 1 (1987PfZX); 50.3 ms 7 (1993Ru01); 59 ms 12 (2003Be05); 54.2 ms 13 (2011Ni01). The NRM is used for weighted averaging procedure. Weighted average of above values gives 54.7 ms 11 with a reduced χ^2 =11; unweighted average gives 56.4 ms 13. Other: 54 ms 4 (Adopted Levels for ⁹⁹Rb in ENSDF database, July 2017 update).

⁹⁹Rb-Q(β^{-} n): From 2017Wa10.

⁹⁹Rb-%β⁻n decay: %β⁻n=19.1 *18*, weighted average of 20.5 *30* (1987PfZX, also 13.0 *15* in this work), 20.7 *23* (1986ReZU), and 15 *3* (1979Pe01).

1982Kr11: Rb isotopes were produced via ²³⁸U(n,X) reactions with neutron beams from the high-flux reactor in Grenoble and reaction products separated by the alkali isotope separator OSTIS. γ rays and electrons were detected with Ge(Li) detectors and neutrons were detected with three ³He ionization chambers. Measured E γ , I γ , $\beta\gamma$ -coin, n γ -coin. Deduced levels, delayed-neutron branching ratios. Comparisons with theoretical calculations. Others:

 β^n and T_{1/2}: 1993Ru01, 1986ReZU (also 1986ReZS, both supersede 1986Wa17), 1984Pf01, 1983Re10, 1979Pe01, 1971Tr02. Additional information 1.

98Sr Levels

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\ddagger}$
0.0	0+	0.653 s 2
144.6 5	2+	
215.5 7	0^{+}	
434.0 7	4+	
871.2 7	(2^{+})	
1224.4 7	$(0^+, 1)$	

[†] From a least-squares fit to γ -ray energies, assuming $\Delta E \gamma = 0.5$ keV.

[‡] From the Adopted Levels.

$\gamma(^{98}\mathrm{Sr})$

Iv normalization, $I(\gamma+ce)$ normalization: From $I(\gamma+ce)(144.6\gamma)+I(\gamma+ce)(215.5\gamma)=100-(\beta^{-}n \text{ feeding to g.s. of } 29\% 7 \text{ from } 1982\text{Kr}11)=71 7$.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [‡]	α@	$I_{(\gamma+ce)}^{\#}$	Comments
70.9	6	215.5	0+	144.6 2+	E2	3.57		α (K)=2.86; α (L)=0.579; α (M)=0.0979; α (N)=0.01098; α (O)=0.000348
144.6	100	144.6	2+	0.0 0+	E2	0.263		α (K)=0.228; α (L)= 0.0317; α (M)=0.00534; α (N)=0.000631; α (O)=3.03×10 ⁻⁵
215.5 ^{&} 289.4	30	215.5 434.0	0+ 4+	$\begin{array}{ccc} 0.0 & 0^+ \\ 144.6 & 2^+ \end{array}$	E0 E2	0.0218	5	ce(K)/(γ +ce)=0.844 α (K)=0.0191; α (L)=0.00230; α (M)=0.000385; α (N)=4.71×10 ⁻⁵ ; α (O)=2.70×10 ⁻⁶
655.3 ^{&} 726.6 1079.8	9 2 10	871.2 871.2 1224.4	(2^+) (2^+) $(0^+,1)$	$\begin{array}{ccc} 215.5 & 0^+ \\ 144.6 & 2^+ \\ 144.6 & 2^+ \end{array}$				

99 Rb β^- n decay (57.8 ms) 1982Kr11 (continued)

$\gamma(^{98}\text{Sr})$ (continued)

[†] From 1982Kr11. Quoted values of intensities are relative to I(144.6 γ)=100.

[‡] From Adopted Gammas.

[#] For absolute intensity per 100 decays, multiply by 0.103 14.

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[&] Placement of transition in the level scheme is uncertain.

Delayed Neutrons (98Sr)

E(⁹⁸ Sr)	$I(n)^{\dagger\ddagger}$
0.0	29 7
144.6	35 7
215.5	22
434.0	20 5
871.2	73
1224.4	73

[†] From 1982Kr11.
[‡] For absolute intensity per 100 decays, multiply by 0.191 18.

⁹⁹Rb β ⁻n decay (57.8 ms) 1982Kr11

Decay Scheme

