²³⁵ $U(n,F\gamma)$ **2017Re05**

History

Type Author Citation Literature Cutoff Date
Full Evaluation Jun Chen, Balraj Singh NDS 164, 1 (2020) 15-Feb-2020

2017Re05: measured level lifetimes by fast-timing $\gamma\gamma$ (t) method using EXILL and FATIMA spectrometer consisting of eight EXOGAM clover Ge detectors and 16 LaBr₃(Ce) detectors for fast timing. The experiment was performed at the ILL-Grenoble reactor facility using cold neutron beam. The ⁹⁸Sr nuclide was produced as a fission fragment. Time-stamped data were acquired and sorted off line for Ge-LaBr₃-Ge events for $\gamma\gamma$ -coincidence analysis and Ge-LaBr₃-LaBr₃-TAC events for lifetime analysis. Deduced B(E2) values and compared with Monte Carlo Shell-model calculations.

Others:

2012Mu08: E=thermal neutrons from the Canada India Research Utility Services (CIRUS) reactor facility, Bhabha Atomic Research Center (BARC), Mumbai. Target≈5.1 gm/cm³ UAl₃ (17% enriched ²³⁵U). Gamma rays were detected by two clover HPGe detectors equipped with anti-Compton shields, in coincidence mode. Measured Eγ, Iγ, γγ-coin. Deduced levels, J, π, isotopic yield, angular momentum distribution. All the four excited states observed.

1973Kh05: E=thermal, measured prompt γ and ce radiation. Assignment of a single 193 γ to ⁹⁸Sr seems incorrect (evaluators).

⁹⁸Sr Levels

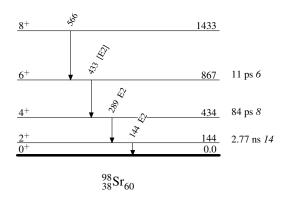
E(level) [†]	$J^{\pi \dagger}$	$T_{1/2}^{\ddagger}$		
0.0#	0_{+}			
144 [#]	2+	2.77 ns 14		
434 [#]	4+	84 ps 8		
867 [#]	6+	11 ps 6		
1433 [#]	8+			

[†] From Adopted Levels. Energies are rounded values.

 γ (98Sr)

E_{γ}^{\dagger}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult. [†]	α^{\ddagger}
144	144	2+	0.0	0^{+}	E2	0.266
289	434	4+	144	2+	E2	0.0218
433	867	6+	434	4+	[E2]	0.0057
566	1433	8+	867	6+		

[†] From Adopted Gammas. Energies are rounded values.


[‡] From $\gamma \gamma(t)$ (2017Re05).

[#] Band(A): g.s. band.

[‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

235 U(n,F γ) 2017Re05

Level Scheme

²³⁵U(**n,F**γ) **2017Re05**

Band(A): g.s. band

