99Ru(d,t) 2002Ro34

History										
Type	Author	Citation	Literature Cutoff Date							
Full Evaluation	Jun Chen, Balrai Singh	NDS 164, 1 (2020)	15-Feb-2020							

 $J^{\pi}(^{99}\text{Ru g.s.})=5/2^{+}$.

2002Ro34: E=16 MeV deuteron beam was produced from the Sao Paulo Pelletron accelerator. Target was 97.6% enriched metallic 99 Ru on a carbon backing. Reaction products were momentum-analyzed with the Engel magnetic spectrograph (FWHM=7 keV) and detected in nuclear emulsions. Measured $\sigma(\theta)$. Deduced levels, L-transfers, spectroscopic factors from DWBA analysis. All data are from 2002Ro34.

98 Ru Levels

Spectroscopic factor is defined and obtained using $\sigma(\theta)(\exp) = \Sigma[3.33/(2j+1) \times C^2 S_{Lj} \times \sigma_{Lj}(\theta)(DWBA)]$, where j is the total spin of transferred particle (2002Ro34).

E(level)	L [†]	$S_{\mathrm{Lj}}^{\dagger}$	E(level)	<u></u> Γ	$S_{\mathrm{Lj}}^{\dagger}$	E(level)	_Г.	$S_{\mathrm{Lj}}^{\dagger}$
0	2	0.339 7	2247 2	(2+0)	0.054,0.0064@	2621 2	&	
651 2	2	0.130 <i>3</i>	2277 2	2	0.675 15	3020 5	(2)	0.040 3
1397 2	2	0.127 5	2365 2	&		3046 5	0	0.022 1
1415 2	2+0	$0.037, 0.012^{\ddagger}$	2373 2	&		3071 5	(2+0)	$0.024, 0.020^{\ddagger}$
1797 2	2+0	$0.009, 0.0041^{#}$	2409 2	(2)	0.018 2	3209 ^a 5	&	
1818 2	2	0.120 3	2429 2	(2+0)	$0.105, 0.011^{\ddagger}$	3284 5	(0)	0.013 <i>1</i>
2013 2	(2)	0.036 3	2469 2	0	0.0099 8	3441 5	0	0.045 2
2224 2	(4)	0.12 2	2605 2	(2)	0.060 4			

[†] Extracted from DWBA fit to measured $\sigma(\theta)$. The transferred neutron is assumed as $3s_{1/2}$ orbital for L=0, $2d_{5/2}$ for L=2 and $1g_{7/2}$ for L=4 (2002Ro34).

[‡] Uncertainty=0.006 for L=2, 0.002 for L=0.

[#] Uncertainty=0.002 for L=2, 0.0007 for L=0.

[®] Uncertainty=0.005 for L=2, 0.0011 for L=0.

[&]amp; $\sigma(\theta)$ distribution does not allow a unique assignment.

^a Possible doublet.