Coulomb excitation 2016Cl03

	Hi	istory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen, Balraj Singh	NDS 164, 1 (2020)	15-Feb-2020

2016Cl03, 2016Cl01: ⁶⁰Ni,²⁰⁸Pb(⁹⁸Rb,⁹⁸Rb γ): ⁹⁸Rb ions were contaminant of ⁹⁸Sr beam at 276 MeV from REX-ISOLDE-CERN facility. Targets were 2.1 mg/cm² thick ⁶⁰Ni and 1.5 mg/cm² thick ²⁰⁸Pb. Scattered Rb ions and target recoils were detected using an annular double-sided silicon strip detector (DSSSD) and γ rays were detected with the MINIBALL HPGe detector array. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma(\theta)$, recoil distance. Deduced levels, J, lifetimes, γ -ray transition strengths. Comparisons with available data.

2015Bo11: ⁷Li(⁹⁸Rb,⁹⁸Rb γ): E=2.85 MeV/nucleon ⁹⁸Rb beam was produced from REX-ISOLDE facility with strong contaminant of isobaric ⁹⁸Sr. Target was a 1.5 mg/cm² LiF enriched in ⁷Li. Scattered particles were detected with the T-REX system consisting of a Si compact-disk (CD) detector with two layers to act as a Δ E-E detector for particle identification placed at forward angles; γ rays were detected using the MINIBALL array consisting of 24 six-fold segmented HPGe crystals. Measured E γ , I γ , $\gamma\gamma$ -coin, (particle) γ -coin. Transitions of 51, 95, 115 keV where observed in coincidence with ⁷Li particles and can be attributed to excitation of either the ⁹⁸Rb or ⁹⁸Sr beam components. As the 51 γ and 115 γ are not in coincidence with the 144-keV, 2⁺ to 0⁺ transition in ⁹⁸Sr, 2015Bo11 placed them as possibly belonging to ⁹⁸Rb.

Additional information 1.

All data including level scheme are from 2016Cl03, unless otherwise noted. No level scheme is reported by 2016Cl01 and 2015Bo11.

⁹⁸Rb Levels

E(level) [†]	J^{π}	T _{1/2}	Comments
0.0	0(-)		J^{π} : from the Adopted Levels.
50.2 3		<0.7 [‡] ns	
113.8 2	(2 ⁻)	1.18 ns 35	J^{π} : Coulomb excitation from $J^{\pi}=0^{(-)}$ g.s. 2016Cl03 propose same parity for the 114 and 432 levels.
			$T_{1/2}$: from RDDS analysis, and scaled upwards by a factor of 1.4, as estimated from a comparison of lifetime determined using a similar analysis for the first 2 ⁺ state in ⁹⁸ Sr and the corresponding value in literature.
144.9 15		<0.7 [‡] ns	
244.0 20		<0.7 [‡] ns	
258.4 2			
432.1 6	(1 ⁻ ,2 ⁻)		J^{π} : 2016Cl03 propose 1 or 2, based on 432 γ to the g.s. The authors also propose same parity for g.s., 114, and 432 levels.
636.8 15			

[†] From a least-squares fit to γ -ray energies.

[‡] Estimated from Doppler correction for 50.2-, 94.7-, and 99.1-keV γ rays.

$\gamma(^{98}\text{Rb})$

Assignment of γ rays to ⁹⁸Rb is based on the analysis of $\gamma\gamma$ -coin data in 2016Cl03, which shows that these are not in coincidence with any known transition in ⁹⁸Sr or ⁹⁸Y.

Eγ	γ counts [†]	E_i (level)	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Comments
50.2 3	379×10 ¹ 13	50.2	0.0 0 ⁽⁻⁾	Other I γ values for ²⁰⁸ Pb target: 2790 <i>180</i> in 29.2°-41.9° (c.m.) range, 2890 <i>130</i> in 45.2°-68.1° (c.m.) range, 440 220 in 132.5°-139.9° (c.m.) range.
				1γ values for ⁶⁰ Ni target: 2050 80 in 54.0° –69.9° (c.m.) range, 1500 150 in 72.7° –97.5° (c.m.) range, 450 60 in 100.0° –112.9° (c.m.) range.
94.7 14	413×10 ¹ 14	144.9	50.2	Other I γ values for ²⁰⁸ Pb target: 520 <i>120</i> in 29.2°-41.9° (c.m.) range, 1440 <i>150</i>

Continued on next page (footnotes at end of table)

Coulomb excitation 2016Cl03 (continued)

$\gamma(^{98}\text{Rb})$ (continued)

E_{γ}	γ counts [†]	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Comments
						in 45.2°-68.1° (c.m.) range, 630 50 in 132.5°-139.9° (c.m.) range. Iγ values for ⁶⁰ Ni target: 1110 <i>110</i> in 54.0°-69.9° (c.m.) range, 1580 <i>120</i> in 72.7°-97.5° (c.m.) range, 560 40 in 100.0°-112.9° (c.m.) range.
99.1 <i>13</i>	433×10 ¹ 18	244.0		144.9		Other I γ values for ²⁰⁸ Pb target: 600 <i>130</i> in 29.2°-41.9° (c.m.) range, 1570 <i>130</i> in 45.2°-68.1° (c.m.) range, 640 <i>60</i> in 132.5°-139.9° (c.m.) range.
						17 values for $^{\circ\circ}$ Ni target: 1050 120 in 54.0 $^{\circ}$ -69.9 $^{\circ}$ (c.m.) range, 1550 120 in 72.7 $^{\circ}$ -97.5 $^{\circ}$ (c.m.) range, 640 50 in 100.0 $^{\circ}$ -112.9 $^{\circ}$ (c.m.) range
113.8 2	500×10 ¹ 50	113.8	(2 ⁻)	0.0	0(-)	Other I γ values for ²⁰⁸ Pb target: 2530 <i>190</i> in 29.2°-41.9° (c.m.) range, 3050 <i>300</i> in 45.2°-68.1° (c.m.) range, 600 <i>60</i> in 132.5°-139.9° (c.m.) range.
						Iγ values for ⁶⁰ Ni target: 2500 <i>150</i> in 54.0°-69.9° (c.m.) range, 2090 <i>110</i> in 72.7°-97.5° (c.m.) range, 640 <i>40</i> in 100.0°-112.9° (c.m.) range.
258.4 2	120×10 ¹ 20	258.4		0.0	0(-)	Other I γ values for ²⁰⁸ Pb target: 550 40 in 29.2°-41.9° (c.m.) range, 730 60 in 45.2°-68.1° (c.m.) range, 180 20 in 132.5°-139.9° (c.m.) range.
						Iγ values for ⁶⁰ Ni target: 410 30 in 54.0° –69.9° (c.m.) range, 380 30 in 72.7° –97.5° (c.m.) range, 131 16 in 100.0° –112.9° (c.m.) range.
318.3 8	80×10 ¹ 30	432.1	(1-,2-)	113.8	(2-)	Other I γ values for ²⁰⁸ Pb target: 60 60 in 29.2°-41.9° (c.m.) range, 170 30 in 45.2°-68.1° (c.m.) range, 101 14 in 132.5°-139.9° (c.m.) range.
						Iγ values for ⁶⁰ Ni target: 210 20 in 72.7°–97.5° (c.m.) range, 81 11 in 100.0°–112.9° (c.m.) range.
378.4 14	210 80	636.8		258.4		Other I γ value for ²⁰⁸ Pb target: 50 <i>16</i> in 45.2°-68.1° (c.m.) range. I γ values for ⁶⁰ Ni target: 90 <i>12</i> in 72.7°-97.5° (c.m.) range, 36 9 in 100.0°-112.9° (c.m.) range.
432.1 8		432.1	(1 ⁻ ,2 ⁻)	0.0	0(-)	There is a γ transition of 433 from 6 ⁺ to 4 ⁺ in ⁹⁸ Sr, but 2016Cl03 find inconsistency in the yields of this line at forward and backward angles, suggesting the presence of another line, possibly belonging to ⁹⁸ Rb.

[†] From 2016Cl03 for ²⁰⁸Pb target in the 84.4°-127.3°(c.m.) range. Corresponding values for other angles, and for the ⁶⁰Ni target are given under comments. All values are without efficiency correction.

98 37Rb₆₁