$^{98}_{41}\rm{Nb}_{57}$

98 Zr β^- decay (30.7 s) 1976He10

	History					
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Jun Chen, Balraj Singh	NDS 164, 1 (2020)	15-Feb-2020			

Parent: ⁹⁸Zr: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=30.7$ s 4; $Q(\beta^-)=2238$ 10; % β^- decay=100.0

⁹⁸Zr-T_{1/2}: From ⁹⁸Zr Adopted Levels, taken from 1976He10.

 98 Zr-Q(β^{-}): From 2017Wa10.

1976He10: source of ⁹⁸Zr was from the fission products produced by bombarding enriched ⁹⁸Mo metal powder with 14.7 MeV neutron from the T-D reaction at the Cockcroft-Walton accelerator facility. Measured β , T_{1/2} with a Si(Li) detector. No γ rays are reported. 1976He10 report data primarily on ⁹⁸Nb decay.

Others: 1987Ma58, 1975Si23 (98 Zr produced from mass separation of fission fragments), 1967Hu08 and 1960Or02 (98 Zr production and $T_{1/2}$).

⁹⁸Nb Levels

E(level)	$\frac{\mathbf{J}^{\pi}}{1^{+}}$ \mathbf{J}^{π}	π : from Adopted Levels.		
				β^- radiations
E(decay)	E(leve	el) $I\beta^{-\dagger}$	Log ft	Comments
(2238 10)	0	100	4.154 10	av E β =905.8 47 E(decay): measured 2.3 MeV 2 (1976He10), 2.1 MeV 2 (1967Hu08).

[†] Absolute intensity per 100 decays.