98 Nb β^- decay (2.86 s) 1976He10,1987Ma58

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Jun Chen, Balraj Singh	NDS 164, 1 (2020)	15-Feb-2020					

Parent: ⁹⁸Nb: E=0; $J^{\pi}=1^+$; $T_{1/2}=2.86 \text{ s} 6$; $Q(\beta^-)=4591 5$; $\%\beta^-$ decay=100.0

 98 Nb-J^{π},T_{1/2}: From 98 Nb Adopted Levels.

⁹⁸Nb-Q(β^{-}): From 2017Wa10.

1976He10: Sources of ⁹⁸Nb in g.s. were from the β^- decay of ⁹⁸Zr produced by fission of ²³⁵U with thermal neutrons at Institut fur Kernchemie. γ rays were detected with Ge(Li) and NaI(Tl) detectors and β particles were detected with a β -ray proportional counter. Measured E γ , I γ , $\gamma\gamma$ -coin, E β , $\beta\gamma$ -coin, E(ce), I(ce), T_{1/2}(⁹⁸Nb g.s.). Deduced levels, branching ratios. Same data also appear in a thesis by one of the authors(Herzog).

1987Ma58: measured absolute intensities of 734, 787 and 1024 transitions using a mass-separated sample for A=98 nuclei from ²³⁵U(n,F) reaction. No contamination from A=97 and A=99 nuclides was observed. The low temperature for the ion source further isolated ⁹⁸Rb only (with <5% direct ⁹⁸Sr). The A=97 nuclides in the sample were contributed only by delayed neutron decay (13.4%) of ⁹⁸Rb.

1983VaZQ: ⁹⁸Nb and ⁹⁸Y sources formed in ²³²Th,²³⁸U(α ,F), E=40 MeV. Measured K-shell and L-shell conversion lines for 735, E0 transition in ⁹⁸Mo and 853, E0 transition in ⁹⁸Zr.

Other measurements:

1978St02: *β*, *βγ*.

1976KhZT: ce for 735 transition.

1971Fo21: ce for 735, E0 transition.

1969Hu07: γ , $\gamma\gamma$, β , $\beta\gamma$. 5 γ 's reported. See also 1967Hu08, 1967Hu07, 1967Hu11 for ce, ce(t) and T_{1/2}(⁹⁸Nb g.s.). 1960Or02: T_{1/2}(⁹⁸Nb g.s.).

⁹⁸Mo Levels

E(level) [†]	J ^{π‡}	T _{1/2}	Comments
0.0	0^{+}		
734.61 10	0^{+}	22 ns 1	$T_{1/2}$: 735ce(t) (1967Hu07).
787.29 21	2+		
1432.37 23	2^{+}		
1758.91 22	2+		
2037.5 7	0^{+}		
2207.0 4	2+		
2608.3 7	0^+		

[†] From least-squares fit to $E\gamma$ data.

[‡] From Adopted Levels.

 β^- radiations

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft	Comments
(1983 5)	2608.3	0.33 14	5.4 2	av E β =786.7 24
(2384 5)	2207.0	1.7 3	5.0 1	av E β =972.1 24
(2554 5)	2037.5	0.88 17	5.4 1	av E β =1051.2 24
(2832 5)	1758.91	10.3 11	4.56 5	av E β =1181.9 24
				E(decay): 2760 200 (1978St02) from $\beta(1024\gamma)$ coin.
(3159 5)	1432.37	6.6 9	5.0 1	av E β =1336.1 24
				E(decay): 3180 200 from $\beta(1432\gamma)$ coin (1978St02).
(3804 5)	787.29	3.5 7	5.6 1	av $E\beta = 1642.7 \ 24$
(3856 5)	734.61	20 4	4.8 1	av E β =1667.9 24
(4591 5)	0.0	57 6	4.72 5	av E β =2019.1 24
				E(decay): 4580 120 (1978St02), 4800 200 (1976He10).

Continued on next page (footnotes at end of table)

 $^{98}\mathrm{Nb}\,\beta^-$ decay (2.86 s) 1976He10,1987Ma58 (continued)

 β^{-} radiations (continued)

[†] From γ +ce intensity balance at each level. [‡] Absolute intensity per 100 decays.

 $\gamma(^{98}{\rm Mo})$

I γ normalization: from I γ (absolute)(787 γ)=13 *I* (1987Ma58). Other measurements give I γ (absolute)=3.2 *5* (1976He10), 4.0 *20* (1969Hu07). See general comment on I γ for details of different measurements.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	δ^{\ddagger}	$\alpha^{@}$	$I_{(\gamma+ce)}^{\#}$	Comments
326.7 6	2.4 4	1758.91	2+	1432.37	2+	(M1(+E2))	-0.17 22	0.0111 8		$\alpha(K)=0.0097 \ 7; \ \alpha(L)=0.00112 \ 10; \ \alpha(M)=0.000201 \ 17 \ \alpha(N)=3.05 \times 10^{-5} \ 25; \ \alpha(O)=1.71 \times 10^{-6} \ 10$
645.1 <i>3</i>	26 3	1432.37	$2^+_{2^+}$	787.29	2^+	E2+M1	+1.69 16	0.00475 23		
734.6 1	100	734.61	2+ 2 ⁺	0.0	0 ⁺	E0 E2			200 35	ce(K)/(γ +ce)=0.843 E _{γ} : from level energy difference. Mult.: no corresponding γ ray seen in ce data. I _(γ+ce) : from I(γ +ce)(absolute)(735)=26 4 determined from ce(854 E0 in ⁹⁸ Zr)/ce(735 E0 in ⁹⁸ Mo)=0.56 6 (1983VaZJ) and absolute intensity I(γ +ce)=14.4 14 of 854 transition in ⁹⁸ Zr (see ⁹⁸ Y β^- decay: 0.548 s). 1987Ma58 deduced a value of 26 6 using I(γ +ce)(854)=15 3. Other %I(γ +ce) measurements: 5.5 11 (1976He10), 6 2 (1967Hu07). ce(854)/ce(735)=0.40 in 1971Fo21 gives absolute I(γ +ce) \approx 30 (as deduced by 1976He10). Others: ce(854)/ce(735)=0.36 6, 0.47 5 in two different reactions (1983VaZQ) is consistent with that from 1987Ma58 and 1971Fo21. See general comment on I γ for details of these measurements. I $_{\gamma}$: absolute I γ =13 1 (1987Ma58). Others: 3.2 5 (1976He10), 4.0 20 (1969Hu07). See also general
971.7 <i>3</i>	25 <i>3</i>	1758.91	2+	787.29	2+	M1+E2	-0.97 14			comment on $I\gamma$.
1024.3 <i>3</i>	47 5	1758.91	2+	734.61	0^{+}	E2				I_{γ} : from $I_{\gamma}(1024\gamma)/I_{\gamma}(787\gamma)=6.1 \ 6/13 \ 1 \ (1987Ma58)$. Other: $I_{\gamma}=50 \ 6 \ (1976He10)$.
1250.2 6 1419.7 3 1432.4 3 1758.4 6 1821.0 6	6.8 <i>12</i> 12.8 20 26 <i>4</i> 5.0 <i>10</i> 2.5 <i>10</i>	2037.5 2207.0 1432.37 1758.91 2608.3	0^+ 2^+ 2^+ 2^+ 0^+	787.29 787.29 0.0 0.0 787.29	2^+ 2^+ 0^+ 0^+ 2^+	(E2) M1+E2 E2 [E2] (E2)	-0.33 11			E_{γ} , I_{γ} : from $\gamma\gamma$ only (1976He10).
1821.0 0	2.5 10	2608.3	0,	181.29	Ζ'	(E2)				E_{γ}, I_{γ} : from $\gamma\gamma$ only (19/6He10).

ω

[†] From 1976He10, unless otherwise noted. Relative intensities are from 98 Zr- 98 Nb equilibrium mixture. The absolute intensities of 734 and 787 transitions have been measured by 1987Ma58, 1976He10 and 1967Hu07 using different methods. In 1987Ma58, data for 735 and 787 transitions were normalized to 854 (an E0 transition in 98 Zr from 98 Y decay) and 743 transition (in 97 Nb from 97 Zr and 97 Nb IT decay with I γ (absolute)=94.75% 30), respectively. 1976He10 normalized intensity of 787 γ to 743 γ (in 97 Nb from 97 Zr and 97 Nb IT decay). The absolute intensity of 735 transition was determined from Ice(735) and integrated β spectrum for 98 Nb. 1969Hu07 measured absolute intensities of both transitions with β and γ detectors of calibrated efficiencies. The results from $\gamma(^{98}\text{Mo})$ (continued)

1987Ma58 are considered more reliable but differ by a factor of ≈ 4 from those by 1976He10 and 1969Hu07. The ratio Ice(854,E0 in ⁹⁸Zr from ⁹⁸Y decay)/Ice(735, E0 in ⁹⁸Mo from ⁹⁸Nb decay) were also measured by 1983VaZQ in ²³²Th(α ,F) and ²³⁸U(α ,F) reactions, and by 1971Fo21 from fission of 235 U and 239 Pu.

[‡] From Adopted Gammas.

[#] For absolute intensity per 100 decays, multiply by 0.13 *I*. [@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

From ENSDF

$\frac{98}{100} \text{Nb } \beta^{-} \text{ decay (2.86 s)} \qquad 1976 \text{He10,1987Ma58}$

⁹⁸₄₂Mo₅₆