	Hi	istory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen, Balraj Singh	NDS 164, 1 (2020)	15-Feb-2020

 $Q(\beta^{-}) = -1684 \ 3; \ S(n) = 8642.60 \ 6; \ S(p) = 9799 \ 4; \ Q(\alpha) = -3271.57 \ 24 2017Wa10$

S(2n)=15463.73 17, S(2p)=17255.07 18 (2017Wa10).

Corresponding values in 2021Wa16 are the same, except for slightly higher S(p)=9802 4.

Acknowledgement for modifications made May 06, 2021: evaluators are grateful to Professor H.T. Fortune (University of

Pennsylvania) for pointing out mistake in B(E2)(W.u.) value of 52.6-keV transition from 787.4, 2⁺ to 734.8, 0⁺ level; and to Dr.

Adam Hayes (NNDC, BNL) for discussion and advice about analysis of Coulomb excitation data in 2002Zi06 article.

No new experimental structure references as of May 5, 2021 for ⁹⁸Mo since the update in February, 2020.

Mass measurements: 2015Gu09, 2012Ka13, 2008De16.

In 97 Mo(n, γ):resonances dataset, a total of 116 resonances are listed with resonance parameters in the energy range E(n)=16 eV to

4 keV, taking most data from 2018MuZY evaluation. 2015Wa18 measured resonance data for 65 neutron resonances from 0.0162 to 1.7 keV. Except for nine resonances in this work, all the others are listed by 2018MuZY.

Other reactions:

 ${}^{50}\text{Ti}({}^{48}\text{Ca,X})$: 2001Le37, measured E γ vs. Spin for compound nucleus.

⁹⁴Zr(¹⁶O,¹²C) E=60 MeV: 1973Ch10.

Neutrino capture by ⁹⁸Mo: 1995Er08 and 1995Er05 (theory).

⁹⁸Mo(e,e'): 1975Dr06; E=120, 200, 274 MeV. $\sigma(\theta)$ data, nuclear radii deduced.

⁹⁸Mo(antiproton,x): 1994Ha51, 1993Wy03, 1986Ka08. 1986Ka08: E=200, 300 MeV/c. X rays reported at energy (relative intensity): 76.0 (100), 102.8 (133), 144 (129), 210 (122) and 324 (15). E2 nuclear resonance effects are observed.

⁹⁸Mo(γ ,xn) GDR: 1974Ca05, 1974Be33. GDR at 15.52 MeV with σ =6.0 MeV. 1974Be33 deduced $\beta_2(787, 2^+)$ =0.168. Theory: 1977Be11.

 $^{12}C(^{78}Kr,X),(^{82}Kr,X),(^{86}Kr,X) E=6-13 MeV/nucleon: 1999Ji01: Measured fragment <math>\sigma$, deduced asymmetric fission barrier of ^{98}Mo compound nucleus.

¹⁰⁰Mo(¹⁰B,¹²B) E=67 MeV: 1984As02, measured polarization of ¹²B by $\beta(\theta)$.

¹⁰⁰Mo(32 S, 34 S) E=180 MeV: 1995He17, measured $\sigma(\theta)$.

¹⁰¹Ru(n, α) E<2 keV: 1978An01, measured α widths; E=thermal: 2009WaZW, measured E γ , I γ , σ for g.s. and 787 level.

Hyperfine measurements for g.s.: 2009Ch09, 1986Ol03, 1985Go10, 1984Br09, 1978Au05, 1972Pe02; deduced Isotope shifts and rms charge radius.

Additional information 1.

Theory references: consult the NSR database (www.nndc.bnl.gov/nsr/) for 114 primary references, 101 dealing with nuclear structure calculations and 13 with decay modes and half-lives.

⁹⁸Mo Levels

Cross Reference (XREF) Flags

		A B C D E F G H	⁹⁸ Nb β ⁻ decay (2.86 s) ⁹⁸ Nb β ⁻ decay (51.1 min) Muonic atom ⁹⁶ Zr(α ,2n γ) ⁹⁶ Zr(¹⁶ O, ¹⁴ C) ⁹⁶ Mo(pol t,p),(t,p) ⁹⁶ Mo(¹⁸ O, ¹⁶ O) ⁹⁷ Mo(n, γ) E=th	I J K L M N O P	⁹⁷ Mo(n,γ) E=res ⁹⁷ Mo(n,γ):resonances ⁹⁷ Mo(d,p) ⁹⁸ Mo(γ,γ') ⁹⁸ Mo(n,n'),(n,n) ⁹⁸ Mo(n,n'γ) ⁹⁸ Mo(p,p'),(p,p) ⁹⁸ Mo(d,d')	Q R S T U V W	${}^{98}Mo({}^{3}He,{}^{3}He')$ ${}^{98}Mo(\alpha,\alpha')$ Coulomb excitation ${}^{100}Mo(p,t)$ ${}^{100}Ru({}^{14}C,{}^{16}O)$ ${}^{102}Ru(d,{}^{6}Li)$ ${}^{168}Er({}^{30}Si,X\gamma)$
$\frac{\mathrm{E(level)}^{\dagger}}{0.0^{a}}$	$\frac{\mathbf{J}^{\pi @}}{0^{+}}$	$\frac{T_{1/2}}{\text{stable}}$	XREF AB DEFGHI KLMNOPQRSTUVM	- F F	Evaluated rms charge radiu Evaluated $\delta < r^2 > (9^2 \text{Mo}, 9^8 \text{N})$	us=4.3 ⁄Io)=+	Comments 3847 fm 15 (2013An02). -0.834 fm ² 1 (2013An02).

 $J^{\pi} {:}$ no hyperfine structure observed in optical spectroscopy (quoted by

98 Mo Levels (continued)

E(level) [†]	Jπ@	T _{1/2} &	XREF	Comments				
				1969Ful1 as priv comm from Arroe (1951)). T _{1/2} : >1.0×10 ¹⁴ y (1952Fr23) from neutrino-less ββ decay. Additional information 2. Δ <r<sup>2>(⁹⁸Mo,⁹²Mo)=+0.811 fm² 20 (2009Ch09), laser spectroscopic technique at ISOLDE-CERN facility. Isotope shift(⁹⁸Mo,⁹²Mo)=-1842 MHz 20 (2009Ch09). Δ<r<sup>2>(⁹⁶Mo,⁹⁸Mo)=-0.210 fm² 5 (1985Go10); 0.150 fm² 12 (1978Au05); Δ<r<sup>2>(⁹⁸Mo,¹⁰⁰Mo)=0.227 fm² 19 (1978Au05); Δ<r<sup>2>(⁹⁸Mo,¹⁰⁰Mo)=0.227 fm² 19 (1978Au05). Others: 1980Sc01, 1965Ch05 (muonic data); 1975Dr06 ((e,e') data). Neutron occupancies deduced from neutron-removal reactions ⁹⁸Mo(d,p),(p,d),(³He,α) (2017Fr08): 0.17 <i>1</i> for ν2s_{1/2} orbital, 3.34 <i>17</i> for ν1d orbital, 1.13 <i>6</i> for ν0g_{7/2} orbital, and 1.25 9 for ν0h_{11/2} orbital, to add to a total of 5.88 20, compared to expected value of 6.</r<sup></r<sup></r<sup></r<sup>				
				Proton vacancies from proton-removal reaction ${}^{98}Mo({}^{3}He,d)$ (2017Fr08): 0.91 5 for π 1p orbital, 6.78 34 for ν 0g _{9/2} orbital, to add to a total of 7.69 34, compared to expected value of 8.				
734.75 4	0+	21.8 ns 9	AB D F HI KLMNOP STUV	J^{π} : L(pol t,p)=L(p,t)=0. Also E0 to 0 ⁺ seen in (t,p ce). T _{1/2} : from ce(t) in (p,p' γ) (1972Bu18). Others: 22 ns 2 (1971AnZV), 1970Co01				
787.384 ^{<i>a</i>} 17	2+	3.47 ps 7	AB DEFGHI K MNOPQRST VW	(19/1AnZv), 19/0Co01. μ=+0.97 6 (2011Ch23,2014StZZ) Q=-0.26 9 (1979Pa11,2016St14) J ^π : E2 787.4γ to 0 ⁺ . μ: from Coulomb excitation. Others: +0.97 7 (2001Ma17), +0.7 4 (1969He11). Q: from Coul. ex., value applies to constructive interference of the higher excited 2 ⁺ states as for other nuclides in this mass region. Q=+0.09 9 for destructive interference. β ₂ (p,p')=0.180 14 (1992Ke07). Others: 1990Pi14, 1975Bu04, 1972Aw03, 1971Lu07. β ₂ (d,d')=0.167 4 (2001Uk01), 0.153 (1978Wa11), 0.155 (1977Pe18). β ₂ (α,α')=0.142 or 0.150 (1990Bu25). Others: 1975Bu04, 1972Ma56. β ₂ (Coul. ex.)=0.174 5 (1972Ba90). T _{1/2} : from B(E2)(from g.s.)=0.2692 54, weighted average of 0.277 8 (2002Zi06); 0.267 4 (1979Pa11, 0.266 5 in 1976Pa13); 0.286 14 (1972Ba90); 0.275 15 (1971WaZP); 0.270 32 (1962Ga13); 0.26 4 (1962Er05); 0.270 32 (1958St32); 0.27 4 (1956Te26); and B(E2)↑=0.260 10 deduced from T _{1/2} =3.60 ps 14 (Doppler broadening,1972SiZP). Final uncertainty was adjusted to 2%. Value of B(E2) is 0.2695 57 in 2016Pr01 evaluation, without the inclusion of 2002Zi06 value.				
1432.210 <i>19</i>	2+	1.53 ps <i>16</i>	AB DeF HI K MNOP RST V	XREF: T(1435.9)V(1460). J^{π} : E2 1432.2γ to 0 ⁺ . T _{1/2} : from B(E2) in Coul. ex. β_2 =0.052 (1975Bu04,(p,p')); 0.046 (1977Pe18,(d,d')); 0.033 (1975Bu04.(α,α')); 0.037 2 (1972Ba90.Coul. ex.).				
1510.047 ^{<i>a</i>} 21	4+	2.53 ps 5	B DeF HI K MNOP RST vW	XREF: K(?)v(1460). E(level): possibly a doublet at 1460 in (d, ⁶ Li). J ^{π} : stretched E2 722.6y to 2 ⁺ ; L(p,p')=L(d,d')=4 from 0 ⁺ . β_4 =0.023 (1992Pi08,(p,p')); 0.021 (1992Pi08,(d,d')); 0.034 (1975Bu04,(α , α')).				

98 Mo Levels (continued)

E(level) [†]	J ^π @	$T_{1/2}^{\&}$	XREF	Comments
1758.49 3	2+	1.42 ps 6	ABDFHIK MNOP STV	J ^π : E2 1023.7γ to 0 ⁺ ; L(pol t,p)=L(p,t)=2. $β_2$ =0.03 (1972Aw03,(p,p')); 0.029 (1977Pe18,(d,d')); 0.11 5 (1972Ba90,Coul. ex.).
1871‡ 2	2+		OP	J^{π} : L(p,p')=L(d,d')=2.
1880.86 17	≤ 4			J^{π} : 449.1 γ and 1093.2 γ to 2 ⁺ .
1903.03 8	0.		DF MNP I	I^{π} . L(nol t n)=L(n t)=0
2017.53 ^b 3	3-	65 ps 7	B D F HT K mNOP RST VW	XREF: m(1960)T(2013.0)
2017/00 0	U	oe po ,	2 2 1 11 11 11 11 11 11 11	J^{π} : L(pol t,p)=L(p,t)=3.
				$\beta_3(\mathbf{p},\mathbf{p}')=0.210 \ I6 \ (1992\text{Ke07}).$ Others: 1990Pi14, 1975Bu04,
				19/2Aw03, $19/1Lu0/$.
				1978Wa11, 1977Pe18, 1966Ki04.
				$\beta_3(\alpha, \alpha') = 0.155 (1975Bu04), 0.160 \ l2 (1972Ma56).$
2027 52 7	0+			β_3 (Coul. ex.)=0.220 <i>11</i> (1972Ba90).
2037.527	01		A D N T	XREF: $I(2034.7)$. I^{π} : from $\sigma(6^{\circ})/\sigma(15^{\circ})$ in (p t)
2104.72 4	3+		B D HI K MN	XREF: K(2110?)M(2070).
				J ^{π} : spin=3 from $\gamma(\theta)$ in $(n,n'\gamma)$ and $\gamma\gamma(\theta)$ in $(\alpha,2n\gamma)$;
				672.5 γ and 1317.4 γ M1+E2 to 2 ⁺ . log ft=9.0 from (5) ⁺ is
				overestimated (see 98 Nb β^- decay)
2206.61 6	2^{+}	<0.257 ps	ABDFHkmN TV	XREF: k(2216)m(2200)T(2199.9)V(2210).
				J^{π} : L(pol t,p)=L(p,t)=2.
				$T_{1/2}$: upper limit from effective half-life=0.208 ps 49 from DSAM in (α ,2n γ) (2016Th01).
2209+ 2	0^+		OP DEUT HUNDET	J^{π} : L(p,p') or L(d,d')=0.
2223.802 22	4		B D F HI K IIINOP K I	J^{π} : L(pol t.p)=L(p.p')=L(q,q')=4.
2240 2	4+		MO	XREF: M(2250?).
0000 10 10	2+	(0.47		J^{π} : L(p,p')=4.
2555.18 12	Ζ.	<0.47 ps	DIA KANOP I	E(level): This level is defined separately from the 2333.4 level
				based on $\gamma\gamma$ -coin evidence in $(\alpha, 2n\gamma)$ for the 900.85-keV
				transition, and Doppler shift shown by this γ ray, and not by
				the other γ rays from 2333.4,4 ⁺ level. Another evidence is
				very weak as compared to the 1546γ , and there it is placed
				from a 3737 level. A 900.9 γ in (n,γ) E=th and a 900.96 γ in
				$(n,n'\gamma)$, where this γ is placed from the 2333.4, 4 ⁺ level, is
				now placed here from the 2555.2, 2° level by evaluators. I^{π} . L(nol t n)=L(n t)=L(n n')=2
				$T_{1/2}$: upper limit from effective half-life=0.35 ps 12 from
	4			DSAM in $(\alpha, 2n\gamma)$ (2016Th01).
2333.46 3	4'		B D HI K MNOP R	XREF: k(2340)m(2380)R(2360). E(level): see comment for 2333.1 level
				J^{π} : L(p,p')=L(α, α')=4; spin=4 is also from $\gamma(\theta)$ in (n,n' γ).
2343.62 ^a 3	6^{+}	5.2 ps 2	BDfHkmN SVW	XREF: f(2336)k(2340)m(2380)V(2330).
				J^{π} : $\gamma(\theta)$ in $(\alpha, 2n\gamma)$ suggested stretched Q (E2) to 4 ⁺ , also
				L(u, LI)=0; L(poi l,p)=2(+0). T _{1/2} : from B(E2) in Coul. ex
2350 [‡] 2	(2^{+})		k m OP	$X_{1/2}$. Hold $D(D2)$ in Court ext XREF: $k(2340)m(2380)$.
	(-)			J^{π} : L(p,p') or L(d,d')=2 but L(p,p')=6 is also given by
				1971Lu07 for a 2343 group.
2369 [‡] 2	2^{+}		m OP	XREF: m(2380).

⁹⁸Mo Levels (continued)

E(level) [†]	Jπ @	$T_{1/2}^{\&}$	2	XREF	Comments
					J^{π} : L(p,p') or L(d,d')=2.
2418.46 [‡] <i>11</i>	2+		DFH	k mNOP	XREF: H(?)k(2430)m(2380). J ^π : L(p,p') or L(d,d')=2.
2419.63 4	4+		BD H	kmN T	XREF: $k(2430)m(2380)T(2417)$. J^{π} : $L(\alpha, \alpha')=4$; spin=4 from $\gamma\gamma(\theta)$ in $(\alpha, 2n\gamma)$. $J^{\pi}=3^{-}$ from $L(p,t)$ are in disagreement.
2485.15 [‡] 7	3+		BD H	K mNOP T	XREF: K(2500)m(2500)T(2489). J ^{π} : 1697.6 γ M1+E2 to 2 ⁺ and 975.0 γ M1+E2 to 2 ⁺ ; but L (n n') or L (d d')=3 suggest 3 ⁻
2506.38 4	5+		BD H	kmN T	XREF: k(2530)m(2500)T(2502.1). J^{π} : spin=5 from $\gamma\gamma(\theta)$ in (α ,2n γ), 996.3 γ M1+E2 to 4 ⁺ . L (n t)=(3) is in disagreement
2509 2	1-			k m OP	XREF: $k(2530)m(2500)$. J ^{π} : L(p,p')=1.
2525.8 [#] 3	2+	<0.367 ps	D F	k mNOP T	XREF: F(2530)k(2530)m(2500)N(?)T(2520.4). J^{π} : L(pol t,p)=2. L(p,p')=(1) is in disagreement. $T_{1/2}$: upper limit from effective half-life=0.326 ps 41 from DSAM in (α ,2n γ) (2016Th01).
2537 [‡] 5	(1^{-})			OP	J^{π} : L(p,p') or L(d,d')=(1).
2562.23 [#] 16	(2 ⁻)		D H	NOP	J^{π} : 2 ⁻ suggested from cross section data in (p,p'), described as a 2-step process. In (n, γ) E=thermal, J=1 is suggested from $\gamma\gamma(\theta)$ data.
2570.9? 5 2572.84 10	(6,7,8) 3		D BDH	k N	J^{π} : 227.3 γ to (6 ⁺). XREF: k(2585).
2574.86 7	4+		BDF	k OPRT	J^{π} : L(pol t,p)=L(p,t)=L(p,p')=L(d,d')=4 for a 2574 group; γ^{π} : L(pol t,p)=L(p,t)=L(p,p')=L(d,d')=4 for a 2574 group;
2612.4 5	0^+		A D F	ΤV	$J_{\rm XREF: F(2617)T(2611.3)V(2620).}$ J ^{π} : L(pol t,p)=L(p,t)=0.
2620.01 17	3+		B D HI	k N	XREF: I(2627)k(2630). J ^{π} : spin=3 from $\gamma\gamma(\theta)$ in (α ,2n γ); 1187.5 γ and 1832.7 γ M1+E2 to 2 ⁺ .
2620.78 ^b 5	5-		B D H	k NOP	W XREF: k(2630).
2644.7? 4	(1,2 ⁺)			N T	J ^{<i>n</i>} : L(p,p')=L(d,d')=5; γγ(θ) in (α,2nγ). XREF: T(2646). J ^π : possible 1909 for to 0 ⁺
2678.88 [#] 3	6+		B D	mNOP R T	W XREF: m(2700)N(?)R(2690)T(2678). J^{π} : L(α, α')=6 for 2690; $\gamma \gamma(\theta)$ in ($\alpha, 2n\gamma$). L(p,p')=(4,5) disagrees.
2700.68 [‡] 16	2+	<0.208 ps	BDFH	mNOP T	XREF: F(2695)m(2700)T(2699.6). J^{π} : L(t,p)=L(p,t)=2; $\gamma\gamma(\theta)$ in (α ,2n γ). L(p,p')=(4) is in disagreement. $T_{1/2}$: upper limit from effective half-life=0.173 ps 35 from
-1-					DSAM in $(\alpha, 2n\gamma)$ (2016Th01).
2733.4 ⁺ 3	2+		DF	m OP T V	XREF: m(2700)T(2731.6)V(2740). J^{π} : L(p,p') or L(d,d')=L(t,p)=L(p,t)=2. L(d,^{6}Li)=(2+0) indicates a doublet. $\gamma\gamma(\theta)$ in (α , $2n\gamma$) gives J=2.3
2738.2 ^d 5 2767.68 4	(6,7) 4 ⁺		D B D F H	N	W J^{π} : 394.3 γ to (6 ⁺). XREF: F(2791)N(?).
					J ^{π} : spin=4 from $\gamma\gamma(\theta)$ in $(\alpha, 2n\gamma)$; 1980.4 γ (E2) to 2 ⁺ (M2 is unlikely).
2795.61 11	4-		D H	NO	J ^{π} : spin=4 from $\gamma\gamma(\theta)$ in (α ,2n γ); 778.0 γ M1+E2 to 3 ⁻ . L(p,p')=5 suggests 5 ⁻ .

98 Mo Levels (continued)

E(level) [†]	J ^π @	$T_{1/2}^{\&}$		XREF		Comments
2799.6 5	0^{+}				Т	J^{π} : L(p,t)=0.
2813.3 [‡] 3	2+		ΒD	OP	Т	XREF: T(2811.1). J ^{π} : L(p,p) or L(d,d')=2; $\gamma\gamma(\theta)$ in (α ,2n γ).
2836.83 [‡] 6	6+		BDF	K NOP	Т	XREF: F(2826)K(2829)N(?)T(2835.3). J^{π} : $\gamma\gamma(\theta)$ in $(\alpha, 2n\gamma)$; L(t,p)=6 for a 2826 10 group and L(n,n') or L(d,d')=6. L(n,t)=L(\alpha,\alpha')=4 is in disagreement
2851 10	0^{+}		F			J^{π} : L(t,p)=0.
2854.15 <i>15</i> 2856.2 <i>2</i>	(8 ⁺) 4 ⁺		D B	m OP R	W	J^{π} : proposed in (³⁰ Si,x γ) based on 510.5 γ to 6 ⁺ . XREF: B(?)m(2900)R(2870).
2871.1 4	2,3	<0.35 ps	D	Km	Т	J : $L(p,p) = L(d,d) = L(a,a) = 4.$ XREF: $K(2880)m(2900)T(2868).$ J ^{π} : from $\gamma\gamma(\theta)$ in $(a, 2n\gamma).$
2896.79 <i>17</i> 2905.2 <i>7</i>	5+ 4+	<0.166 ps	D D	m OP	т	$T_{1/2}$: from DSAM in (α,2nγ) (2016Th01). J ^π : spin=5 from γγ(θ) in (α,2nγ); 1386.8γ M1+E2 to 4 ⁺ . XREF: m(2900)T(2902.2).
		i i i				J^{π} : L(p,p')=L(d,d')=4. T _{1/2} : upper limit from effective half-life=0.152 ps <i>14</i> from DSAM in (α ,2n γ) (2016Th01).
2915.8 [‡] 4	2+	<0.138 ps	DF	K mNOP	Т	XREF: $F(2898)m(2900)T(2914.4)$. J^{π} : $L(t,p)=2$, $L(p,p')$ or $L(d,d')=2$. $T_{1/2}$: upper limit from effective half-life=0.076 ps +62-42 from DSAM in (α ,2n γ) (2016Th01).
2962.45 16	3-		D HI	k OP	Т	E(level): doublet in (t,p). XREF: k(2980)T(2963). $I^{\pi}: L(p,p')=L(d,d')=3$
2976.89 10	4+	<0.67 ps	BDFH	k OP	Т	XREF: $F(2969)k(2980)T(2977.4)$. J^{π} : $L(t,p)=L(p,t)=4; \gamma\gamma(\theta)$ in $(\alpha,2n\gamma)$. $T_{1/2}$: upper limit from effective half-life=0.44 ps 23 from DS AM is $(-2\pi)^{-2}(2016Th(1))$
3010 912 20			B			DSAM in $(\alpha, 2n\gamma)$ (20161n01). XREF: B(?)
3020.42 8	5-		B D	OP		J^{π} : L(p,p')=L(d,d')=5.
3021.75 3	4+		BDFH	R	Υ	XREF: $F(3013)H(?)R(3020)T(3021)$. J ^{π} : L(t,p)=L(p,t)=4.
3026.2 <i>3</i> 3045.89 <i>23</i>	5+ 4+		D fH	ор		J^{π} : spin=5 from $\gamma\gamma(\theta)$ in (α ,2n γ); 1516.2 γ M1+E2 to 4 ⁺ . XREF: f(3044)o(3049)p(3049). J^{π} : L(t p)=4 for 3044 group: L(p p')=L(d d')=4 for 3049
						group.
3050.92 6	4+	<0.146 ps	BDfH	k op	Т	XREF: $f(3044)H(?)k(3066)o(3049)p(3049)T(3050)$. J ^{π} : L(t,p)=4 for 3044 group ; 1618.8 γ to 2 ⁺ and 544.5 γ to 5 ⁺ .
3067.70 8	(3 ⁻)		BD H	k NOP	т	T _{1/2} : upper limit from effective half-life=0.125 ps 21 from DSAM in $(\alpha, 2n\gamma)$ (2016Th01). XREF: H(?)k(3066)T(3067.8).
						J ^π : L(p,t)=3; log <i>ft</i> =8.8 from (5) ⁺ . L(p,p')=5 for a 3060 level (1972Aw03) and J=2 for a 3067 level (1990Pi14) are in conflict
3095.80 17	2+		B F			XREF: B(?)F(3093). J^{π} : L(t,p)=2.
3096.26 ^{‡b} 16	(7-)		BD	OP	W	J ^{π} : from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$, γ to (5^-) consistent with stretched E2, but L(p,p') or L(d,d')=(6) suggests 6 ⁺ .
3103.13 [‡] 20	(2+,3,4)		Н	k op	t	XREF: k(3124). J^{π} : primary γ from (2 ⁺ ,3 ⁺) and γ to (4 ⁺). L(p,p') or L(d,d')=2 for a 3106 group suggests 2 ⁺ for 3103 and/or 3109. L(p,t)=2 for 3105.3.
3108.80 [‡] <i>17</i>	(2+,3,4)		D H	k op	t	XREF: k(3124).

⁹⁸Mo Levels (continued)

E(level) [†]	J ^π @	T _{1/2} &				XRI	EF			Comments
										J ^{π} : primary γ from (2 ⁺ ,3 ⁺) and γ to 4 ⁺ ; L(p,t)=2 for 3105.3. See also comment for 3103 level.
3125 [‡] 5	(3 ⁻)						OP			J^{π} : L(p,p') or L(d,d')=(3).
3152 [‡] 5	2+						OP	т		XREF: T(3150).
										J^{π} : L(p,p') or L(d,d')=2.
3155.56 22	(4^{+})				Н	k				XREF: k(3168).
										J^{π} : 811.5 γ to 6 ⁺ , 455.1 γ to 2 ⁺ .
3165.89 5	4+		В			k	OP	Т		XREF: k(3168)T(3167).
2105 56 17	(2 - 2, 4)							-		J'': $L(p,p') = L(d,d') = 4; \log ft = 7.7 \text{ from } (5)^{+}.$
3195.30 17	(2,3,4)				н			1		AKEF: $I(5197)$. I^{π} : 1103 last to 3^{-} and 300 88as to 4^{-} ; primary as from
										$2^+, 3^+$
3208.99 12	$(4^+, 5^-)$		В							J^{π} : 530.4 γ to 6 ⁺ , 1190.8 γ to 3 ⁻ .
3210.80 25	(4 ⁺)			D	Н		N	t		XREF: t(3211.6).
										J^{π} : 1193.2 γ to 3 ⁻ and possible 866.6 γ to 6 ⁺ . Primary
										γ from 2 ⁺ ,3 ⁺ . L(p,t)=4 for 3211.6 group.
3211.57 3	(4^{+})		В		Н		N	t		XREF: t(3211.6).
										J^{n} : 590.9 γ to 5 ⁻ , 705.5 γ to 5 ⁺ , possible 2424.1 γ to
3214 5	2-						OD .	D		2° ; $\log \pi = 0.4$ from (5) $^{\circ}$; L(p,t)=4 for 3211.6 group.
5214 5	5						Ur .	ĸ		I^{π} : L(t p)=L(p p')=L(d d')=L($\alpha \alpha'$)=3
3229.17 10	(4^{+})	<0.173 ps	В	D						J^{π} : 415.5 γ to 2 ⁺ , 885.6 γ to 6 ⁺ , 1718.8 γ to 4 ⁺ .
		· · · · · ·								$T_{1/2}$: upper limit from effective half-life=0.152 ps 21
										from DSAM in $(\alpha, 2n\gamma)$ (2016Th01).
3241.2 10	(4 ⁺ to 7)		В			k		Т		XREF: k(3270)T(3239.1).
										J^{π} : 562.3 γ to 6 ⁺ ; log <i>ft</i> =8.4 from (5) ⁺ .
3257.86 10	1	0.0041 eV 3				L				B(E1)(\uparrow)=0.34×10 ⁻³ 3, B(M1)(\uparrow)=0.031 3 (2006Ru06).
3263 5	1-					k	OP			XREF: k(3270).
2264.0.5	0±				_			_		J^{π} : L(p,p')=L(d,d')=1.
3264.9 5	01			1	ť	k		Т		XREF: $F(3259)k(3270)$.
										E(level): from (p,t). I^{π} : I (t p)-I (p t)-0
3271 49 ^a 16	(8^{+})			D					W	I^{π} : $\gamma(\theta)$ from $(\alpha 2n\gamma)$ consistent with stretched E2 to
5271.19 10	(0)			2						$(6^+).$
3276 5	(3-,4+)						0			J^{π} : L(p,p')=(3,4).
3302.9 6	2^{+}			1	F	k		Т		XREF: F(3294)k(3270).
										E(level): from (p,t).
2205 5	- -						0.5			J^{n} : L(t,p)=2.
3305 3	(7^{-})			л			OP			J [*] : L(p,p')=L(d,d')=5. I^{π} : $aa(d)$ in (2.2ma): (M1(1 E2)) 227 day to (7 ⁻)
3325.38 10	(7) 4^+		R	ע		k	NOP	т		J : $\gamma\gamma(0)$ III (α ,2II γ), (WI(+E2)) 227.4 γ to (7). XREE : $k(3340)N(2)T(3326)$
5520.41 4	-		D.			ĸ	NOI	1		J^{π} : L(p,p')=L(d,d')=4: log ft=6.8 from (5) ⁺ .
3343 2	2+					k	OP	т		$XRFF \cdot k(3340)$
5515 2	2						01	-		E(level): from (p.t). Other: 3344.5 from (p.p') and
										$(\mathbf{d},\mathbf{d}').$
										J^{π} : L(p,p') or L(d,d')=2.
3366.1? <i>3</i>			В							
3386.2 [‡] 10	2^{+}						OP	Т		E(level): from (p,t). Other: 3389 5 from (p,p') and $(d d')$
										J^{π} : L(p,p') or L(d,d')=2.
3394.50 5	(4^{+})		В				N			XREF: N(?).
										J^{π} : γ to 2 ⁺ ; log <i>ft</i> =6.6 from (5) ⁺ .
3400.92 14	4+		В				0			J^{π} : L(p,p')=4.
3403.95 14	$(5^{-},6^{+})$		В							J ^{<i>n</i>} : 192.4 γ to (4 ⁺), possible 306.9 γ to (7 ⁻);

⁹⁸Mo Levels (continued)

E(level) [†]	J ^π @	T _{1/2} &		Х	KRE	F			Comments
3405.06 <i>10</i> 3418.74 <i>22</i>	1 4 ⁺	0.044 eV 3	В		L k	NOP	т		log ft =7.7 from (5) ⁺ . B(E1)(\uparrow)=3.2×10 ⁻⁵ 2, B(M1)(\uparrow)=0.289 19 (2006Ru06). XREF: k(3430)N(?)T(3421).
3455.17 6	(4 ⁺)		В	H	k	N	Т		J^{n} : L(p,p')=L(d,d')=4; log <i>ft</i> =8.3 from (5) ⁺ . XREF: H(?)k(3430)N(?)T(3457). J^{π} : at to 2 ⁺ : log <i>ft</i> =6.0 from (5) ⁺ .
3457.07 10	1	0.035 eV 2			L				$B(E1)(\uparrow)=2.45\times10^{-5}$ 16, $B(M1)(\uparrow)=0.222$ 15 (2006Bn06)
3465.95 <i>11</i> 3474 2	(4+)		В			0	т		J^{π} : L(p,p')=(4).
3489 [‡] 1	2+					OP	Т		E(level): from (p,t). Other: 3485 5 from (p,p') and (d,d'). J^{π} : L(p,p') or L(d,d')=2.
3501.7 <i>3</i>	(4+)		В		k	0			XREF: k(3512). J ^{π} : L(p,p')=(4); 2714.3 γ to 2 ⁺ ; log <i>ft</i> =8.9 from (5) ⁺ ;
3516.75 7	(4 ⁺)		В		k		Т		XREF: k(3512)T(3515.7). J ^{π} : 1758.7 γ to 2 ⁺ , 679.7 γ to 6 ⁺ .
3524 [‡] 5	(6^{+})					OP			$J^{\pi}: L(p,p')=L(d,d')=(6).$
3527.4 ^{<i>d</i>} 5 3541.28? <i>15</i>	(8,9 ⁻)		В					W	J^{π} : proposed in (³⁰ Si,X γ); 431.5 γ to (7 ⁻).
3547.51 6	(4^{+})		В	Н					XREF: H(?).
									J^{π} : 2760.0 γ to 2 ⁺ , 1204.2 γ to 6 ⁺ ; log <i>ft</i> =7.2 from (5) ⁺ .
3551.35 9	1	0.035 eV 3			L				E(level): this state decays to g.s. and the first excited 0^+ state, indicative of two coexisting configurations are mixed in the 0^+ states (2006Ru06).
2554 079 11			P		1.				B(M1)(2817 γ , to excited 0 ⁺)/B(M1)(3551 γ , to g.s.)=0.28 5 (2006Ru06), if J^{π} =1 ⁺ .
3554.877 11	(Λ^+)	<0.215 pg	В		K Ir	on			XKEF: $K(3570)$
5557.0 4	(4)	<0.215 ps	U		ĸ	ОÞ			J^{π} : L(p,p')=L(d,d')=4 for a 3560 5 group. T _{1/2} : effective half-life=0.166 ps 49 from DSAM in (α .2n γ) (2016Th01).
3565.65 8	(4+)		В		k	ор			XREF: $k(3570)$. J ^{π} : L(p,p')=L(d,d')=4 for a 3560 5 group.
3598.29 16	(4+)		В	H		0			XREF: $H(?)$. J^{π} : $L(p,p')=4$ for a 3598 5 group.
3601.1 <i>4</i> 3617.12? <i>21</i>	(4+,5,6)		B B		k				J^{π} : 922.3 γ and 1257.2 γ to 6 ⁺ ; log <i>ft</i> =7.8 from (5) ⁺ . XREF: k(3636).
3620.10 <i>19</i>	(3 ⁻ ,4)		В		k				XREF: k(3636). J^{π} : 1515.5 γ to 3 ⁺ and 1602.0 γ to 3 ⁻ ; log <i>ft</i> =7.9 from (5) ⁺ .
3623.57 6	4+		В		k	OP			XREF: $k(3636)$. J^{π} : $L(p,p')=L(d,d')=4$ from 0^+ .
3639 5	4+				k	0	Т		XREF: k(3636)T(3634). J ^π : L(p,p')=4.
3656.7 [°] 3	(9 ⁻)		D					W	J^{π} : proposed in (³⁰ Si,X γ); 560.5 γ to (7 ⁻), 385.1 γ to (8 ⁺).
3664 5 3682 5	4+ 4+				k	0P 0	Т		J^{π} : L(p,p')=L(d,d')=4. XREF: k(3695)T(3685). J^{π} : L(p,p')=4.
3703.98 20	1	0.0042 eV 6			L				B(E1)(\uparrow)=0.23×10 ⁻³ 16, B(M1)(\uparrow)=0.021 3 in (γ, γ') (2006Bu06)
3711.9 7	5-		В		k	OP			XREF: $k(3695)$. $I^{\pi}: L(p,p') = L(d,d') = 5$.
3723.7 3	4+		В		k	0			XREF: k(3740). J^{π} : L(p,p')=4 from 0 ⁺ .

98 Mo Levels (continued)

E(level) [†]	Jπ@		Х	REI	F			Comments
3737.79 9	4+	В	Н	k l	NOP			XREF: H(?)k(3740)N(?).
2757 5	5-				•			J^{π} : L(p,p')=L(d,d')=4.
3/5/5	5 (0 ⁻)	P			0		1.7	J^{n} : L(p,p')=5.
3777 88 11	(9) 4 ⁺	B		k	OP		W	J [*] : proposed in (${}^{\circ}$ S1,X γ); 6/2.4 γ to (/). XREF: k(3790)
5777.00 11	·	2			01			J^{π} : L(p,p')=L(d,d')=4.
3793 5	5-			k	0	Т		XREF: k(3790)T(3796).
3806 08 20	1			т				J^{n} : L(p,p')=5.
3809.20 10	$(4,5,6^+)$	В		k				XREF: k(3790).
								J^{π} : log ft=7.5 from (5) ⁺ ; 2299.1 γ to 4 ⁺ .
3809.59 10	(4,5 ⁻)	В		k				XREF: $k(3790)$.
2821 5					OD			$J^{*}: 1/92.1\gamma \text{ to } 3^{\circ}; \log \pi = 7.0 \text{ from } (3)^{\circ}.$
3836.98 10	1			L	OP			
3842.77 [‡] 20	$(4.5.6^+)$	В			OP	т		XREF: B(?)T(3851).
	()-)-)							J ^{π} : log <i>ft</i> =7.8 from (5) ⁺ ; possible 2332.7 γ to 4 ⁺ .
3857.68 10	1			L	-			
3898 5	(4 ') 1			т	Р			J^{A} : L(d,d')=(4).
3944.09 10	(1)			Ĺ				
3947.5 <i>3</i>	(4+)	В			Р	Т		XREF: P(3939)T(3951).
2064 22 11	(4 ± 5.6)	ъ						J^{π} : L(d,d')=(4); log ft=7.4 from (5) ⁺ .
3981.81 <i>10</i>	(4, 5, 0) 3^{-}	B			Р			J^{π} : L(d,d')=3.
3998.62 [‡] 10	5-	В			OP			XREF: O(3993)P(3993).
								J^{π} : L(p,p') or L(d,d')=5.
4020.6 5	(2)			L				
4041.6 9	(1) 4^+			L	Р			$I^{\pi}: L(d d') = 4$
4060.62? 13	$(4,5,6^+)$	В			-			J^{π} : log ft=7.5 from (5) ⁺ ; possible 2550.5 γ to 4 ⁺ .
4076.43 11	(4,5,6 ⁺)	В						J^{π} : log <i>ft</i> =7.3 from (5) ⁺ ; 2566.4 γ to 4 ⁺ .
40/9.8 4	(2)			L				
4103.35? 20	(4^+)	В		-				J^{π} : possible 2671.1 γ to 2 ⁺ ; log <i>ft</i> =7.4 from (5) ⁺ .
4117 [‡] 5	$(4^+, 5^-)$				OP			J^{π} : L(p,p') or L(d,d')=(4,5).
4143 5	4+				Р			$J^{\pi}: L(d,d')=4.$
4149.2 ^{<i>a</i>} 4	(10^+)	D					W	J^{π} : proposed in (³⁰ Si,X γ); 877.9 γ and 1294.9 γ to (8 ⁺).
4170.8 8	1 3-			L	Р	т		XREF: T(4169)
	U				-	-		J^{π} : L(d,d')=3.
4179.90 20	(1)			L				
4190.2 ^{<i>a</i>} 7	(10,11)						W	J^{π} : proposed in (³⁰ Si,X γ); 662.7 γ to (8,9).
4231.1 4 4247 5	1 4^+			L	P	т		XRFF· $T(4253)$
1217 5	·				1	1		J^{π} : L(d,d')=4.
4252.6 12	(1)			L				
4258.8 5	1			L				
4295.40 10	(1)			L				
4356 10	~ /					Т		
4361.80 10	(1)			L				
4410.21 10	1			L L				
	-			-				

98 Mo Levels (continued)

E(level) [†]	J ^π @		XREF		Comments
4423.9 ^c 6	(11 ⁻)	D		W	J^{π} : proposed in (³⁰ Si,X γ); member of negative-parity sequence; 767.2 γ to
4440.1? 7		D			(9).
4537.7 <mark>b</mark> 8	(11^{-})	D		W	J^{π} : proposed in (³⁰ Si,X γ): 769.0 γ to (9 ⁻).
4543.31 20	1		L		
4581.6 7	(1)		L		
4590.62 10	1		L		
4599.3 5	1		L		
4609.5? 8		D			
4616.2 5	1		L		
4654.3 4	(1)		L		
4812.73 20	l		L		
4837.53 10	1		L		
4902.83 10	1		L		
4993.6 ⁴ 9	(12,13)			W	J^{π} : proposed in (³⁰ S1,X γ); 803.4 γ to (10,11); member of a sequence.
5008.6 3	1		L		
5028.64 20	I (12+)		L		π 1' (300' X) 007 0 ((10 ⁺)) 1 (
5047.04 /	(12)			W	J ^{x} : proposed in (⁵⁰ S1,X γ); 897.8 γ to (10 ⁺); member of a sequence.
5050.34 10	1		L		
5081.74 20	1		L		
5121.4 5	(1)		I		
5147.6.3	1		I I		
5165 15 20	1		ĩ		
5174.6 12	(2)		ĩ		
5195.5 4	1		L		
5215.0 5	(2)		L		
5225.5 7	(1)		L		
5236.1 9	1		L		
5244.55 20	(1)		L		
5267.7 6	(2)		L		
5312.6 3	1		L		
5314.4 ⁶ 9	(13 ⁻)			W	J^{π} : proposed in (³⁰ Si,X γ); 776.7 γ to (11 ⁻); member of a negative-parity sequence.
5315.3 ^c 8	(13-)			W	J^{π} : proposed in (³⁰ Si,X γ); 891.4 γ to (11 ⁻); member of a negative-parity sequence.
5324.0 5	(1)		L		
5346.66 20	1		L		
5354.66 20	1		L		
5362.7 8	(1)		L		
5386.26 20	1		L		
5397.46 10	l		L		
5412.6 4	1		L		
5452.9 0	1		L		
5442.2 0	1		L		
5458 2 5	1		I I		
5482.36 10	1		ĩ		
5492.4 3	(1)		L		
5508.9 3	1		L		
5519.1 7	1		L		
5528.2 4	1		L		
5544.1 18	(1)		L		
5552.7 8	(1)		L		
5563.27 20	1		L		
5579.2 4	1		L		

98 Mo Levels (continued)

E(level) [†]	Jπ [@]	XREF	Comments
5588 4 15	(1)	L	
5595 6 10	1	Ĩ	
5615 3 12	1	Ĩ	
5626 1 1	1	L	
5628 07 10	1	L	
5654 29 20	1	L	
5054.58 20	1	L	
5664.6 3	1	L	
56/8.8 14	(2)	L	
5686.88 20	1	L	
5708.2 6	1	L	
5716.1 4	1	L	
5725.6 5	1	L	
5732.9 6	1	L	
5741.48 <i>10</i>	1	L	
5754.1 9	1	L	
5764.7 <i>3</i>	1	L	
5775.98 20	1	L	
5791.8 5	1	L	
5801.4 <i>3</i>	1	L	
5811.38 20	1	L	
5828.59 20	1	L	
5856.9.3	1	L	
5889.4 6	1	Ī.	
5906.6.7	1	ī.	
5916 99 20	1	- L	
5025 0 ^a 8	(14^{+})		I^{π} : proposed in (³⁰ S; Y ₂); 878 (b) to (12 ⁺); member of a vest sequence
5050 70 20	1	T	\mathbf{J} . proposed in (\mathbf{J} , \mathbf{X}), \mathbf{J} , \mathbf{J} , \mathbf{J} (\mathbf{J}), included of a yeast sequence.
5072 80 20	1	L	
5084 10 20	1	L	
5002.0.8	1 (1)	L	
5000 7 8	(1)	L	
5999.7 8	(1)	L	
6022.10 20	1	L	
6031.90 10	1	L	
6046.5 4	1	L	
6065.70 10	1	L	
60/6./ /	(1)	L	
6101.6 4	1	L	
6110.20 10	(1)	L	
6120.51 20	(1)	L	
6133.0 ^c 10	(15 ⁻)	W	J ^{π} : proposed in (³⁰ Si,X γ); 817.7 γ to (13 ⁻); member of a negative-parity sequence.
6145.1 <i>18</i>	1	L	
6172 <i>3</i>	1	L	
6183.2 8	(1)	L	
6220.1 11	(1)	L	
6234.5 10	(1)	L	
6247.1 <i>3</i>	(1)	L	
6266.07	(1)	L	
6315.9 <i>3</i>	1	L	
6330.32 20	1	L	
6367.4 4	1	L	
6379.2 8	1	L	
6388.3 7	1	L	
6397.9 5	1	L	
6419.9 11	1	L	
6438.7 10	1	L	
6451.23 20	(1)	L	
		-	
		Contin	ued on next page (footnotes at end of table)

98 Mo Levels (continued)

E(level) [†]	J ^π @	XREF	E(level) [†]	Jπ @	XREF
6465.8 6	1	L	7428.3 4	1	L
6473.4 3	1	L	7434 15		K
6491.8 6	1	L	7447.0 9	1	L
6511.6 11	(1)	Ē.	7461 3 7	1	ī
6522 3 10	(1)	T I	747373	1	T I
6530.6.6	1	T.	7498 0 13	(2)	T.
6543 43 20	1	L. T	7513.2.5	(2)	L. T
6566 7 10	(1)	L T	7513.2 5	(2) (1)	L T
6577 2 10	(1)	L T	7545.5 20	(1)	L T
6596 2 2	1	L	7562.2.7	(2)	L
0380.2 3	1	L	7502.57	1	L
0390.4 3	1	L	7585.14	1	L
6614.9 8		L	7609.1 0	1	L
6631.3 12	(1)	L	7692.0 6	1	L
6636.7 18	(1)	L	7/11.3 6	1	L
6648.1 8	(1)	L	7737.3 20	(1)	L
6680.2 <i>20</i>	(1)	L	7752.5 8	1	L
6698.7 7	1	L	7764.5 4	1	L
6756.35 20	1	L	7781.1 4	1	L
6765.7 7	1	L	7803.4 5	1	L
6815.9 <i>13</i>	(1)	L	7820.5 9	1	L
6824.2 6	1	L	7834.9 <i>13</i>	(1)	L
6836.6 6	(1)	L	7847.1 6	1	L
6847.4 <i>6</i>	1	L	7877.3 6	1	L
6853.7 4	2	L	7889.97	1	L
6866.0 4	(2)	L	7900.8 15	(2)	L
6888.6.5	1	L	7927.3 20	1	L
6900 3 3	(1)	L	7943 6 8	1	ī
6950.8.8	1	Ĩ.	7965 3 20	(1)	ī
695936	(2)	- T	7986 3 20	(1) (2)	Ĩ
6972.0.8	(2)	T I	7996 1 7	1	Ĩ.
6979.6.8	1	T I	8011.6.7	1	Ĩ.
6005 1 5	1	T	8023.6.5	1	T T
7008 77 20	1	T.	8023.0 5	1	T
7035 4 3	1	L. T	8045 2 18	(1)	L. T
7055.4 5	1	L	004 <i>3.2</i> 10	(1)	L
7050.8 0	1	L	0034.0 0	1 (1)	L
7001.8 4	1	L	8008.0 11	(1)	L
7073.30	1	L	00/3 4 0001 1 6	(2)	L
7087.3 11		L	8081.1 0	(1)	L
7105.1 73	(1)	L	8096.26 20	(1)	L
/11/.2 4	1	L	8112.8 8	1	L
/128.0 /	1	L	8124.5 6	1	L
7142.38 20	1	L	8137.5 10	1	L
7156.8 3	1	L	8158.4 6	1	L
7169.6 5	1	L	8168.8 4	1	L
7182.1 3	1	L	8182.8 4	1	L
7192.3 8	1	L	8213.3 10	(2)	L
7204.6 5	1	L	8244.6 10	1	L
7258.4 7	1	L	8255.5 11	(1)	L
7274.4 4	1	L	8266.2 19	(1)	L
7295.7 7	1	L	8277.0 4	1	L
7309.0 9	(1)	L	8289.5 21	1	L
7327.3 5	1	L	8298.4 <i>13</i>	(1)	L
7336.49 20	1	L	8310.1 9	1	L
7353.0 8	(1)	L	8331.2 9	(1)	L
7376.2 11	(1)	L	8357.5 11	(2)	L
7387.4 8	1	L	8370.5 5	1	L
7396.1 <i>3</i>	1	L	8393.4 20	1	L
			1		

⁹⁸Mo Levels (continued)

E(level) [†]	Jπ @	T _{1/2} &	X	REF	Comments
8429.5 9	(2)			L	
8444.4 7	1			L	
8459.6 7	1			L	
8472.1 4	1			L	
8491.7 9	1			L	
8503.9 5	1			L	
8513.1 <i>11</i>	1			L	
8527.3 10	1			L	
8537.5 7	1			L	
8562.8 9	1			L	
8580.2 15	(2)			L	
8590.1 9	1			L	
8602.3 6	1			L	
8613.1 5	1			L	
8620.2 7	1			L	
8627.8 7	1			L	
8636.5 5	1			L	
(8642.58 4)	$2^+, 3^+$		HI		J^{π} : s-wave neutron capture on $5/2^+$.
8650.3 6	1			L	
8662.7 5	1			L	
8674.3 10	1			L	
≈8800				Т	E(level): wide bump attributed to two-hole states.
$13.85 \times 10^{3} 24$	2+	4.68 MeV 34		R	%E2 EWSR=85 14 for ISGQR (2015Yo04).
$14.2 \times 10^3 4$				Q	FWHM of the GQR=4.7 MeV 4 (1979Mo12).
					$d\sigma/d\Omega(at 6^{\circ})=22 \text{ mb/sr } 6, \% \text{EWSR}=87 (1979 \text{Mo12}).$
15.7×10^3	0^{+}	6.5 MeV		R	%E0 EWSR=83 for ISGMR (2015Yo04).
16.0×10 ³ 3	1-	10.9 MeV 11		R	%E1 EWSR=26 3 for ISGDR (2015Yo04).
21.5×10 ³ 4	3-	4.2 MeV 3		R	%E3 EWSR=61 8 for ISGOR (2015Yo04).
24.2×10^3	0^{+}	5.6 MeV		R	%E0 EWSR=14 for ISGMR (2015Yo04).
27.4×10^3 7	1-	10.8 MeV 30		R	%E1 EWSR=49 8 for ISGDR (2015Yo04).

[†] From least squares fit to $E\gamma$ data. For levels populated in (γ, γ') only, energies are from $E\gamma$ values for transitions to the g.s.

^{\ddagger} In the XREF column this level is shown to be populated in both (p,p') and (d,d'), but from the data given by 1992Pi08 (see table 1 in 1992Pi08) it is not clear whether the level is populated in both the reactions or only one of these.

[#] In the XREF column this level is shown to be populated in both (p,p') and (d,d'). While population in (p,p') is certain, it is not clear (from table 1 in 1992Pi08) whether or not the level is populated in (d,d').

^(a) For levels populated in (γ, γ') only, spin assignments are from $\gamma(\theta)$ of ground transitions (L=1 or 2), mostly consistent with spin=1.

& Deduced from measured B(E2) or B(E3) in Coulomb excitation up to 2344 level and from DSAM in $(\alpha, 2n\gamma)$ above that up to 3557, unless otherwise noted. Values of widths are from (γ, γ') or (α, α') where available.

^a Seq.(A): Yrast structure.

^{*b*} Seq.(B): γ cascade based on 3⁻. Possible octupole structure.

^{*c*} Seq.(C): γ cascade based on (9⁻).

^d Seq.(D): γ cascade based on (6,7).

						Adopted	Adopted Levels, Gammas (continued)						
							γ (⁹⁸ M	0)					
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α [@]	Comments				
734.75	0+	734.75		0.0	0+	EO			 E_γ: deduced from level difference. ce line observed in (p,p'γ) and (t,pγ) studies. Mult.: from observation in ce data only. Branching ratio for two photon emission: Γ_{γγ}/Γ<0.0001 at 95% confidence level (2014He12). Two methods were used, one based on direct population of 735, 0⁺ state, and the second based on population of 735, 0⁺ level through 1024γ from 1758,2⁺ level. Strength parameter ρ²(E0)=0.0273 25 (1971AnZV,(p,p'γ)). 				
787.384	2+	(52.63 5)	6.5×10 ⁻⁵ 12	734.75	0+	[E2]		12.06 18	2005Ki02 evaluation gives $\rho^2(E0)=0.0273$ <i>11</i> . B (E2)(W.u.)=9.7 +10-25 α (K)=8.32 <i>12</i> ; α (L)=3.09 <i>5</i> ; α (M)=0.568 <i>8</i> α (N)=0.0770 <i>11</i> ; α (O)=0.001080 <i>16</i> E _{γ} : from level-energy difference. I _{γ} : from B(E2)(735,0 ⁺ to 787,2 ⁺) in Coul. ex. B (E2)(W.u.) from B(E2) \uparrow =0.130 +14-34 (2002Zi06). Other P (E2)(W.u.)=21.8 11 from B (E2) \uparrow =0.202 <i>14</i> (1078L e17)				
		787.372 20	100	0.0	0+	E2			B(E2)(W.d.)=21.8 11 from B(E2)]=0.295 14 (1978La17). B(E2)(W.u.)=20.1 4 E _γ : weighted average of 787.363 20 from ⁹⁸ Nb β ⁻ decay (51.1 min) and 787.38 2 from (n,n'γ). Others: 787.4 3 from ⁹⁸ Nb β ⁻ decay (2.86 s), 787.26 15 from (α,2nγ), 787.42 10 from (n,γ) E=th, 787.4 5 from (³⁰ Si,Xγ), and 787.5 3 from Coulomb excitation. Mult.: Q from $\gamma\gamma(\theta)$ in (α,2nγ) and $\gamma(\theta)$ in (n,n'γ); M2 ruled out by PUI				
1432.210	2+	644.828 20	100 3	787.384	2+	E2+M1	+1.69 16		B(M1)(W.u.)=0.0073 +23-17; B(E2)(W.u.)=48 +9-8 E_{γ} : weighted average of 644.847 20 from ⁹⁸ Nb β^- decay (51.1 min) and 644.81 2 from (n,n' γ). Others: 645.1 3 from ⁹⁸ Nb β^- decay (2.86 s), 644.70 15 from (α ,2n γ), 644.89 11 from (n, γ) E=th, and 644.9 3 from Coulomb excitation. δ : weighted average of +1.67 25 from $\gamma\gamma(\theta)$ in (α ,2n γ) and +1.70 16 from $\gamma(\theta)$ in (n,n' γ). Others: +0.58 5 from $\gamma\gamma(\theta)$ in (n, γ) E=thermal: 40.27 2 from metrix algorithms in Coul. av				
		697.42 10	5.2 3	734.75	0+	(E2)			B=thermar, +0.27 2 from matrix elements in Coul. ex. B(E2)(W.u.)=2.3 +5-4 E _{γ} : weighted average of 697.38 <i>10</i> from ⁹⁸ Nb β^- decay (51.1 min), 697.10 <i>46</i> from (α ,2n γ), 697.6 2 from (n, γ) E=th, and 697.6 5 from Coulomb excitation. I _{γ} : weighted average of 5.0 <i>3</i> from ⁹⁸ Nb β^- decay (51.1 min), 5.8 7 from (α ,2n γ), 5.9 <i>17</i> from (n, γ) E=th, and 5.8 <i>16</i> from Coulomb excitation.				
		1432.22 3	84.2 13	0.0	0+	E2			B(E2)(W.u.)=1.02 +15-12 E _γ : weighted average of 1432.4 <i>3</i> from ⁹⁸ Nb β ⁻ decay (2.86 s), 1432.175 20 from ⁹⁸ Nb β ⁻ decay (51.1 min), 1432.29 20 from (α,2nγ), 1432.31 11 from (n,γ) E=th, 1432.30 3 from (n,n'γ), and				

From ENSDF

L

						Adopted	Levels, Gam	mas (contin	nued)
						,	γ(⁹⁸ Mo) (cor	ntinued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α [@]	Comments
1510.047	4+	77.83	0.00052 8	1432.210	2+	[E2]		2.98	1432.2 <i>3</i> from Coulomb excitation. I _γ : unweighted average of 88.7 <i>8</i> from ⁹⁸ Nb β ⁻ decay (51.1 min), 81.5 <i>16</i> from (α ,2nγ), 84 7 from (n,γ) E=th, 84.9 <i>10</i> from (n,n'γ), and 82 7 from Coulomb excitation. Mult.: Q from $\gamma(\theta)$ in (n,n'γ); M2 ruled out by RUL. B(E2)(W.u.)=15.2 +33-30 $\alpha(K)=2.31$ 4; $\alpha(L)=0.550$ 8; $\alpha(M)=0.1002$ <i>14</i> $\alpha(N)=0.01390$ <i>20</i> ; $\alpha(O)=0.000318$ 5 E _γ : from level-energy difference.
		722.643 20	100	787.384	2+	E2			I _γ : from Coul. ex. B(E2)(W.u.)=42.3 +9-8 E _γ : weighted average of 722.626 20 from ⁹⁸ Nb β ⁻ decay (51.1 min) and 722.66 2 from (n,n'γ). Others: 722.48 15 from (α,2nγ), 722.70 10 from (n,γ) E=th, 722.4 5 from (³⁰ Si,Xγ), and 772.8 from Coulomb equivitien
1758.49	2+	248.45	0.16 <i>3</i>	1510.047	4+	[E2]		0.0462	and 722.8 5 from Coulomb excitation. Mult.: also supported by $\gamma\gamma(\theta)$ in (n,γ) E=thermal and $\gamma(\theta)$ in $(n,n'\gamma)$. Deduced $\delta(O/Q)=-0.05 \ 11 \ (n,n'\gamma)$; $-0.04 \ 3 \ (n,\gamma)$. B(E2)(W.u.)=14 4 $\alpha(K)=0.0398 \ 6; \ \alpha(L)=0.00532 \ 8; \ \alpha(M)=0.000954 \ 14$ $\alpha(N)=0.0001406 \ 20; \ \alpha(O)=6.35 \times 10^{-6} \ 9$
		326.29 12	6.4 4	1432.210	2+	(M1(+E2))	-0.17 22	0.0111 8	E _γ : from level-energy difference. I _γ : from Coul. ex. B(M1)(W.u.)=0.0157 +27-34; B(E2)(W.u.)<22 α (K)=0.0098 7; α (L)=0.00113 10; α (M)=0.000201 18 α (N)=3.06×10 ⁻⁵ 25; α (O)=1.72×10 ⁻⁶ 10 E _γ : weighted average of 326.7 6 from ⁹⁸ Nb β ⁻ decay (2.86 s),
		971.11 <i>4</i>	64 <i>3</i>	787.384	2+	M1+E2	-0.97 14		326.43 <i>13</i> from ⁹⁸ Nb β ⁻ decay (51.1 min), 326.05 <i>25</i> from (α,2nγ), and 326.21 <i>12</i> from (n,γ) E=th. I _γ : weighted average of 5.1 <i>9</i> from ⁹⁸ Nb β ⁻ decay (2.86 s), 4.6 <i>9</i> from ⁹⁸ Nb β ⁻ decay (51.1 min), 7.0 <i>3</i> from (α,2nγ), 6.3 <i>6</i> from (n,γ) E=th, and 5.7 <i>5</i> from Coulomb excitation. B(M1)(W.u.)=0.0032 +8-7; B(E2)(W.u.)=3.0 7 E = weighted average of 071.7 <i>3</i> from ⁹⁸ Nb θ ⁻ decay (2.86 s).
									E _γ : weighted average of 9/1.7 <i>s</i> from ⁵⁰ Nb β ⁻ decay (2.86 s), 970.86 <i>10</i> from ⁹⁸ Nb β ⁻ decay (51.1 min), 971.03 <i>16</i> from (α,2nγ), 971.01 <i>11</i> from (n,γ) E=th, 971.14 <i>3</i> from (n,n'γ), and 971.3 <i>5</i> from Coulomb excitation. I _γ : unweighted average of 53 <i>6</i> from ⁹⁸ Nb β ⁻ decay (2.86 s), 61 <i>3</i> from ⁹⁸ Nb β ⁻ decay (51.1 min), 65.9 <i>10</i> from (α,2nγ), 60 <i>6</i> from (n,γ) E=th, 72.9 <i>10</i> from (n,n'γ), and 70 <i>15</i> from Coulomb excitation. δ : others: -1.6 +7-15 from $\gamma(\theta)$ in (n,n'γ), -2.15 <i>15</i> from $\gamma\gamma(\theta)$ in (n,γ) E=thermal; +0.42 7 from matrix elements in Coul. ex.

$\gamma(^{98}Mo)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	Comments
1758.49	2+	1023.73 <i>3</i>	100.0 13	734.75	0^{+}	E2	B(E2)(W.u.)=7.5 +6-5
							 E_γ: weighted average of 1024.3 3 from ⁹⁸Nb β⁻ decay (2.86 s), 1023.7 1 from ⁹⁸Nb β⁻ decay (51.1 min), 1023.61 16 from (α,2ηγ), 1023.60 11 from (n,γ) E=th, 1023.74 3 from (n,n'γ), and 1023.7 5 from Coulomb excitation. I_γ: from (n,n'γ). Mult.: also supported by γ(θ) in (n,n'γ).
		1758.64 12	6.4 8	0.0	0+	[E2]	 B(E2)(W.u.)=0.032 +7-6 E_γ: weighted average of 1758.4 6 from ⁹⁸Nb β⁻ decay (2.86 s), 1758.46 12 from ⁹⁸Nb β⁻ decay (51.1 min), 1758.64 14 from (α,2nγ), 1758.9 5 from (n,γ) E=th, 1759.1 2 from (n,n'γ), and 1758.8 5 from Coulomb excitation. I_γ: weighted average of 10.6 21 from ⁹⁸Nb β⁻ decay (2.86 s), 5.5 9 from ⁹⁸Nb β⁻ decay (51.1 min), 5.4 21 from (n,γ) E=th, and 6.7 8 from (n,n'γ).
1880.86	≤4	449.1 3	94	1432.210	2+		E_{γ}, I_{γ} : from (n, γ) E=thermal only.
10/2 05	0±	1093.2 2	100 12	787.384	2+		E_{γ}, I_{γ} : from (n, γ) E=thermal only.
1963.05	0^+	531.0 4	39 <i>3</i>	1432.210	2+		E_{γ} : weighted average of 530.61 30 from $(\alpha, 2n\gamma)$ and 531.3 3 from $(n, n'\gamma)$.
		1175.65 8	100 5	787.384	2+	E2	E_{γ} : weighted average of 55 5 from $(\alpha, 2n\gamma)$ and 42 6 from $(n, n'\gamma)$. E_{γ} : weighted average of 1175.57 20 from $(\alpha, 2n\gamma)$ and 1175.66 8 from $(n, n'\gamma)$. I_{γ} : from $(n, n'\gamma)$.
2017.53	3-	258.99 <i>4</i>	25.8 7	1758.49	2+	(E1)	B(E1)(W.u.)=4.9×10 ⁻⁵ +9-7 E _γ : weighted average of 259.00 <i>10</i> from ⁹⁸ Nb β ⁻ decay (51.1 min), 258.96 <i>26</i> from (α,2nγ), 259.01 <i>10</i> from (n,γ) E=th, 258.98 <i>4</i> from (n,n'γ), and 258.9 <i>5</i> from Coulomb excitation. I _γ : weighted average of 26.3 7 from ⁹⁸ Nb β ⁻ decay (51.1 min), 22.0 <i>19</i> from (α,2nγ), 28 <i>3</i> from (n,γ) E=th, 25.5 8 from (n,n'γ), and 27.0 <i>20</i> from Coulomb excitation. Mult.: $\delta(Q/D)$ =+0.01 6 from (α,2nγ).
		507.8 2	4.1 5	1510.047	4+	[E1]	B(E1)(W.u.)=1.02×10 ⁻⁶ +31-24 E _{γ} : from (α ,2n γ) and (n, γ) E=thermal. Other: 507.8 3 from ⁹⁸ Nb β ⁻ decay (51.1 min). I _{γ} : from (n, γ) E=thermal. Other: 3.9 20 from ⁹⁸ Nb β ⁻ decay (51.1 min).
		585.40 ^b	< 0.3	1432.210	2+	[E1]	B(E1)(W.u.)<5.7×10 ⁻⁸ E _v .L _v : from ⁹⁸ Nb β^- decay (51.1 min) only.
		1230.16 4	100 3	787.384	2+	(E1)	B(E1)(W.u.)=1.76×10 ⁻⁶ +28-22 E _γ : weighted average of 1230.15 5 from ⁹⁸ Nb β ⁻ decay (51.1 min), 1230.04 <i>15</i> from (α ,2n γ), 1230.23 <i>12</i> from (n, γ) E=th, 1230.17 4 from (n,n' γ), 1230.3 5 from (³⁰ Si,X γ), and 1230.1 3 from Coulomb excitation. Mult.: δ (Q/D)=-0.04 7 ($\gamma\gamma(\theta)$ in (α ,2n γ); 0.00 2 ($\gamma\gamma(\theta)$ in (n, γ)); -0.04 <i>I</i> ($\gamma(\theta)$ in (n,n' γ)).
		1282.78 ^b	<1.3	734.75	0^+	[E3]	B(E3)(W.u.)<58 E. L.: from 98 Nb θ^- decay (51.1 min) only
		2017.46 <i>10</i>	18.7 <i>12</i>	0.0	0+	[E3]	B(E3)(W.u.)=30 +7-5 E _γ : weighted average of 2017.48 <i>10</i> from ⁹⁸ Nb β ⁻ decay (51.1 min), 2018.01 <i>53</i> from (α ,2n γ), 2017.4 <i>2</i> from (n, γ) E=th, 2017.3 <i>3</i> from (n,n' γ), 2017.3 <i>5</i> from (³⁰ Si,X γ), and 2017.4 <i>5</i> from Coulomb excitation.

15

⁹⁸₄₂Mo₅₆-15

L

					Add	opted Levels	, Gammas (continued)
						γ (⁹⁸ Mo	b) (continued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_f \qquad J_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	Comments
2037.52	0+	1250.13 6	100	787.384 2+	(E2)		I _γ : weighted average of 21.1 <i>13</i> from ⁹⁸ Nb β ⁻ decay (51.1 min), 16.2 <i>17</i> from (α,2nγ), 19.2 <i>21</i> from (n,γ) E=th, 17.0 <i>10</i> from (n,n'γ), and 23.0 <i>20</i> from Coulomb excitation. Other: 58 <i>14</i> from (³⁰ Si,Xγ). E _γ : weighted average of 1250.00 <i>19</i> from (α,2nγ) and 1250.14 <i>6</i> from (n,n'γ).
2104 72	2+	504 65 12	0.4	1510.047 4+			Other: 1250.2 6 from 98 Nb β^- decay (2.86 s).
2104.72	3	394.03 12	94	1310.047 4			E_{γ} : weighted average of 394.06 75 from (α ,2 $n\gamma$), and 594.06 75 from (n,γ) E=th. I_{γ} : weighted average of 8.2 24 from ⁹⁸ Nb β^{-} decay (51.1 min) and 21 8 from (n, α) E=th
		672.52 4	82 3	1432.210 2+	M1+E2	+5.8 [#] 9	E _γ : weighted average of 672.59 10 from ⁹⁸ Nb β ⁻ decay (51.1 min), 672.50 17 from (α,2nγ), 672.63 11 from (n,γ) E=th, and 672.50 4 from (n,n'γ). I _γ : weighted average of 78 6 from ⁹⁸ Nb β ⁻ decay (51.1 min), 79 3 from (α,2nγ), 83 8 from (n,γ) E=th, and 89 4 from (n,n'γ). Mult.,δ: from $\gamma(\theta)$ in (n,n'γ); E1+M2 ruled out by RUL due to large quadrupole mixing. Other: δ =+6.7 +34-17 from $\gamma\gamma(\theta)$ (α,2nγ) agrees well.
		1317.38 10	100 4	787.384 2+	M1+E2	+3.1# 6	E _γ : weighted average of 1317.33 <i>10</i> from ⁹⁸ Nb β^- decay (51.1 min), 1317.37 <i>17</i> from (α ,2n γ), 1317.40 <i>12</i> from (n, γ) E=th, and 1317.43 <i>11</i> from (n,n' γ). Mult., δ : from $\gamma(\theta)$ in (n,n' γ); E1+M2 ruled out by RUL due to large quadrupole mixing. Other: δ =+2.9 + 6=5 from $\gamma(\theta)$ in (α 2n γ) agrees well
2206.61	2^{+}	448.2 2	14 6	1758.49 2+			$\frac{1}{1000} = \frac{1}{1000} = 1$
		696.5 ^b	<1.4	1510.047 4+			
		774.3 ⁶	<6	1432.210 2+			
		1419.36 7	100 14	787.384 2+	M1+E2	-0.33 11	B(M1)(W.u.)>0.019; B(E2)(W.u.)>0.49 E _γ : weighted average of 1419.7 <i>3</i> from ⁹⁸ Nb β ⁻ decay (2.86 s), 1419.07 <i>10</i> from ⁹⁸ Nb β ⁻ decay (51.1 min), 1419.48 22 from (α,2nγ), 1419.39 <i>13</i> from (n,γ) E=th, and 1419.41 5 from (n,n'γ).
		2206.5 ^b	<3	$0.0 0^+$			
2223.862	4+	206.3 5	0.6 4	2017.53 3-			
		465.5 2 713.824 20	0.6 2 100.0 <i>21</i>	$ \begin{array}{r} 1758.49 & 2^+ \\ 1510.047 & 4^+ \end{array} $	M1+E2	+1.13 17	E_{γ} : weighted average of 713.817 20 from ⁹⁸ Nb β ⁻ decay (51.1 min) and 713.87 5 from (n,n'γ). Others: 713.80 16 from (α,2nγ) and 713.88 15 from (n,γ) E=th.
		791.646 20	85.4 5	1432.210 2+	(E2)		E _γ : other: 100.5 from (n,n' γ). E _γ : others: 791.58 <i>17</i> from (α ,2n γ), 791.5 2 from (n, γ) E=th, and 792.0 2 from (n,n' γ).
							I _γ : weighted average of 85.5 5 from ⁹⁸ Nb β^- decay (51.1 min), 83 4 from (α ,2nγ), 78 9 from (n,γ) E=th. Other: 150 20 from (n,n'γ). Mult.: δ (M3/E2)=+0.07 8 from (α ,2nγ).
		1436.45 6	27.4 6	787.384 2+	(E2)		 E_γ: weighted average of 1436.42 5 from ⁹⁸Nb β⁻ decay (51.1 min), 1436.68 25 from (α,2nγ), 1436.6 3 from (n,γ) E=th, and 1437.0 3 from (n,n'γ). I_γ: weighted average of 27.6 4 from ⁹⁸Nb β⁻ decay (51.1 min), 23.4 <i>19</i> from (α,2nγ), 29 6 from (n,γ) E=th, and 23 4 from (n,n'γ). Mult.: δ(M3/E2)=-0.03 7 from (α,2nγ).

$\gamma(^{98}Mo)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	Comments
2333.18	2+	900.92 15	100	1432.210 2+	(M1(+E2))	-0.15 +19-29	B(M1)(W.u.)>0.054 E_{γ} : weighted average of 900.85 21 from (α ,2n γ), 900.9 2 from (n, γ) E=th and 900.96 15 from (n,n' γ). Placement from (α ,2n γ); it is placed from the 2333.4, 4 ⁺ level in (n, γ) E=th and (n,n' γ) and replaced from the 2333.2, 2 ⁺ level by evaluators Mult $\delta_{i} = \gamma \gamma(\theta)$ in (α ,2n γ).
2333.46	4+	109.53 10	0.95 24	2223.862 4+			I_{γ} : from β^{-} (51.1 min). Other: 11 4 in (α ,2n γ) is too large by a factor of almost 10
		575.02 10	6.3 7	1758.49 2+			E _γ : weighted average of 575.06 <i>10</i> from ⁹⁸ Nb $β^-$ decay (51.1 min), 575.06 <i>10</i> from (α ,2n γ), 575.0 2 from (n, γ) E=th, and 574.4 3 from (n,n' γ).
							I _{γ} : weighted average of 6.2 7 from ⁹⁸ Nb β^- decay (51.1 min) and 7.1 21 from (n, γ) E=th. Value of 26 5 in (n,n' γ) is discrepant, not used in averaging.
		823.38 5	57 8	1510.047 4+	M1+E2	-0.388 7	E _γ : weighted average of 823.39 5 from ⁹⁸ Nb β^- decay (51.1 min), 823.33 <i>16</i> from (α ,2nγ), 823.44 <i>12</i> from (n,γ) E=th, and 823.35 7 from (n,n'γ).
							I _γ : unweighted average of 64.1 <i>14</i> from ⁹⁸ Nb β ⁻ decay (51.1 min), 77 5 from (α,2nγ), 45 4 from (n,γ) E=th, and 43.1 23 from (n,n'γ). δ: others: $\delta(Q/D)=-2.7 + 11-21$ or -0.24 20 from $\gamma(\theta)$ in (n,n'γ).
		1546.04 5	100.0 <i>19</i>	787.384 2+	(E2)		E _γ : weighted average of 1546.03 5 from ⁹⁸ Nb β^- decay (51.1 min), 1546.30 22 from (α ,2n γ), 1545.95 12 from (n, γ) E=th, and 1546.06 8 from (n,n' γ).
2343.62	6+	833.562 20	100	1510.047 4+	E2		δ (M3/E2)=-0.04 4 from (α ,2n γ). B(E2)(W,u)=10.1 4
							E _γ : weighted average of 833.556 20 from ⁹⁸ Nb β ⁻ decay (51.1 min), 833.61 13 from (n,γ) E=th, and 833.70 11 from (n,n'γ). Others: 833.52 15 from (α,2nγ) and 833.6 5 from (³⁰ Si,Xγ).
2418.46	2^{+}	985.9 <i>3</i>	100	1432.210 2+	((M1+E2))	+0.01 7	Figure 1. For $(\alpha, 2n\gamma)$, $(\alpha$
		1631.11 <i>11</i>	97 6	787.384 2+			E_{γ} : weighted average of 1631.26 50 from (α ,2n γ), 1631.4 2 from (n, γ) E=th, and 1631.03 10 from (n,n' γ).
2419 63	4+	195 66 10	517	2223 862 4+			I_{γ} : from (α ,2n γ).
2119.00	·	314.9 2	2.9 7	2104.72 3+			E _γ : weighted average of 315.0 2 from ⁹⁸ Nb β^- decay (51.1 min), 314.9 2 from (α ,2n γ), and 314.6 3 from (n, γ) E=th.
							I _{γ} : weighted average of 2.9 7 from ⁹⁸ Nb β^- decay (51.1 min) and 2.8 <i>19</i> from (n, γ) E=th.
		402.05 10	11.1 <i>14</i>	2017.53 3-			E _γ : weighted average of 401.99 <i>10</i> from ⁹⁸ Nb β^- decay (51.1 min), 402.33 <i>39</i> from (α ,2n γ), and 402.2 2 from (n, γ) E=th.
							I _{γ} : weighted average of 13.1 <i>15</i> from ⁹⁸ Nb β^- decay (51.1 min), 10.0 <i>14</i> from (α ,2n γ), and 8 <i>3</i> from (n, γ) E=th.

17

From ENSDF

					Ad	opted Levels, Ga	mmas (continued)
						γ ⁽⁹⁸ Mo) (c	ontinued	<u>1)</u>
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α [@]	Comments
2419.63	4+	661.12 19	19.2 21	1758.49 2+	(E2)		_	E _γ : weighted average of 661.15 <i>19</i> from ⁹⁸ Nb β ⁻ decay (51.1 min), 661.16 <i>40</i> from (α,2nγ), 661.5 <i>5</i> from (n,γ) E=th, and 660.7 <i>4</i> from (n,n'γ). I _γ : weighted average of 28 <i>4</i> from ⁹⁸ Nb β ⁻ decay (51.1 min), 17.8 <i>13</i> from (α,2nγ), 19 <i>9</i> from (n,γ) E=th, and 32 7 from (n,n'γ). $S(M_3/E_2) = 100, 10$ from (α,2nq)
		909.62 5	100.0 22	1510.047 4+	M1+E2	-0.64 10		E_{γ} : weighted average of 909.67 5 from ⁹⁸ Nb β^{-} decay (51.1 min), 909.52 17 from (α ,2n γ), 909.59 13 from (n, γ) E=th, and 909.54 8 from (n n' γ)
		987.48 10	32 3	1432.210 2+				E _γ : weighted average of 987.47 <i>10</i> from ⁹⁸ Nb β ⁻ decay (51.1 min), 987.48 <i>10</i> from (α ,2nγ), 987.6 5 from (n, γ) E=th, and 987.6 8 from (n,n' γ). I _γ : weighted average of 32.8 22 from ⁹⁸ Nb β ⁻ decay (51.1 min), 20 9
		1631.8 <i>3</i>	54 5	787.384 2+				from (n,γ) E=th, and 16 13 from $(n,n'\gamma)$. E _{γ} : unweighted average of 1632.17 10 from ⁹⁸ Nb β^- decay (51.1 min), 1632.46 33 from $(\alpha, 2n\gamma)$, 1631.4 2 from (n,γ) E=th, and 1631.03 10 from $(n,n'\gamma)$.
2495 15	2+	151.0.2	Q 1	2222.46 4+				I _y : unweighted average of 59.9 22 from ⁹⁸ Nb β^- decay (51.1 min), 40.5 16 from (α ,2n γ), 57 9 from (n, γ) E=th, and 60 8 from (n,n' γ).
2405.15	5	131.7 2	0 4	2555.40 4				L_{γ} . weighted average of 151.8 2 from $-Nop$ decay (51.1 mm) and 151.9 2 from $(\alpha, 2n\gamma)$.
		380.3 2	20.8 25	2104.72 3+				E _γ : weighted average of 380.4 2 from ⁹⁸ Nb β^- decay (51.1 min) and 380.05 43 from (α ,2nγ).
								I _{γ} : weighted average of 15 4 from ⁹⁸ Nb β^- decay (51.1 min) and 21.8 <i>17</i> from (α ,2n γ).
		467.0 9	33	2017.53 3-				
		726.83 ^b 10	<4.6	1758.49 2+				I _{γ} : 38 12 from ⁹⁸ Nb β^- decay (51.1 min) but this γ is not confirmed in (α .2n γ), only an upper limit is given.
		975.08 14	36.0 17	1510.047 4+	M1+E2	-0.9 +6-16		E_{γ} : weighted average of 975.02 <i>14</i> from ⁹⁸ Nb β ⁻ decay (51.1 min), 975.25 <i>32</i> from (α,2nγ), and 975.2 <i>3</i> from (n,n'γ).
								I_{γ} : weighted average of 38 4 from ⁵⁰ Nb β^- decay (51.1 min), 35.9 I'_{γ} from (α ,2n γ), and 30 8 from (n,n' γ).
		1052.96 <i>10</i>	54 <i>3</i>	1432.210 2+	M1+E2	-0.97 +27-36		E _γ : weighted average of 1052.95 <i>10</i> from ⁹⁸ Nb $β^-$ decay (51.1 min), 1053.04 <i>26</i> from (α,2nγ), and 1052.96 <i>13</i> from (n,n'γ). L _s : weighted average of 46.8 from ⁹⁸ Nb $β^-$ decay (51.1 min), 55.3
								from $(\alpha, 2n\gamma)$. Other: 104 7 from $(n, n'\gamma)$ is discrepant.
2506.20	<u>-</u> +	1697.6 2	100	787.384 2+	M1+E2	-0.52 13		I_{γ} : from $(n,n'\gamma)$.
2506.38	2'	86.64 10	19 <i>I</i>	2419.63 4*				E_{γ} : weighted average of 86.65 <i>10</i> from ⁷⁶ Nb β decay (51.1 min) and 86.51 <i>32</i> from (α ,2n γ).
		162.53 15	0.9 5	2343.62 6+				<i>y</i> , one, o o nom (<i>a</i> ,2 <i>ny</i>).

	Adopted Levels, Gammas (continued)												
						γ(⁹⁸ Mo) (co	ntinued)						
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_f = J_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α [@]	Comments					
2506.38	5+	172.95 5	71 4	2333.46 4+	(M1(+E2))	+0.05 11	0.057 3						
		282.52 10	1.9 <i>3</i>	2223.862 4+									
		299.6 ^b 2	1.4 5	2206.61 2+	[M3]		0.244	α (K)=0.207 3; α (L)=0.0309 5; α (M)=0.00566 8 α (N)=0.000847 12; α (O)=4.20×10 ⁻⁵ 6 Implied mult=M3 makes this low-energy transition questionable.					
		401.61 ^b		2104.72 3+									
		996.32 5	100.0 18	1510.047 4+	M1+E2	-0.96 10		E_{γ} : weighted average of 996.30 5 from ⁹⁸ Nb β ⁻ decay (51.1 min), 996.33 <i>16</i> from (α,2nγ), and 996.44 <i>13</i> from (n,n'γ).					
2525.8	2+	1093.6 3	100	1432.210 2+	(M1(+E2))	+0.01 17		B(M1)(W.u.)>0.044 E _γ : weighted average of 1093.32 26 from (α ,2nγ) and 1093.9 3 from (n,n'γ).					
2562.23	(2 ⁻)	544.8 2 803.6 5	7.8 12	2017.53 3 ⁻ 1758.49 2 ⁺				E _{γ} : weighted average of 544.52 <i>39</i> from (α ,2n γ), 545.0 2 from (n, γ) E=th, and 544.2 <i>4</i> from (n,n' γ). I _{γ} : weighted average of 7.4 <i>9</i> from (α ,2n γ), 13 <i>4</i> from (n, γ) E=th, and 17 7 from (n,n' γ). E _{α} L _{α} : from (n, γ) E=th.					
		1774.8 3	100 5	787.384 2+	D(+Q)	+0.05 7		E _y : investigated average of 1775.37 23 from (α ,2n γ), 1774.7 2 from (n, γ) E=th, and 1774.31 11 from (n,n' γ). I _y : from (n,n' γ).					
2570.9?	(6,7,8)	227.3 ^b 5	100	2343.62 6+				E_{γ} : from (α ,2n γ) only.					
2572.84	3	239.2 2	16 4	2333.46 4+				E_{γ}, I_{γ} : from (n, γ) E=th.					
		555.3 2	52 7	2017.53 3-				E _γ : weighted average of 555.3 2 from ⁹⁸ Nb β ⁻ decay (51.1 min), 555.07 35 from (α,2nγ), 555.4 2 from (n,γ) E=th, and 555.4 3 from (n,n'γ). I _γ : weighted average of 38 25 from ⁹⁸ Nb β ⁻ decay (51.1 min), 47 7 from (α,2nγ), 59 7 from (n,γ) E=th. Other: 161 30 from (n,n'γ) is discrepant.					
		814.3 2	50 <i>3</i>	1758.49 2+	D(+Q)	+0.10 10		E _γ : weighted average of 814.8 3 from ⁹⁸ Nb β^- decay (51.1 min), 814.46 26 from (α ,2n γ), 814.2 2 from (n, γ) E=th, and 814.1 2 from (n,n' γ). I _γ : weighted average of 50 25 from ⁹⁸ Nb β^- decay (51.1 min), 50 3 from (α ,2n γ), 62 15 from (n, γ) E=th. Other: 94 8 from (n n'a) is discrepant.					
		1140.8 4	29 4	1432.210 2+				E _{γ} : weighted average of 1140.83 47 from (α ,2n γ) and 1140.8 4 from (n, γ) E=th. I _{γ} : weighted average of 29 4 from (α ,2n γ) and 32 15 from (n, γ) E=th					
		1785.54 16	100 13	787.384 2+	D(+Q)	+0.01 6		E_{γ} : weighted average of 1785.66 <i>14</i> from ⁹⁸ Nb β^- decay (51.1					

L

$\gamma(^{98}Mo)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	Comments
							min), 1785.90 24 from (α ,2n γ), 1785.4 3 from (n, γ) E=th, and 1785.1 2 from (n,n' γ).
2574.86	4+	350.79 12	100	2223.862 4+	(M1(+E2))	-0.13 24	E_{γ} : weighted average of 350.78 <i>12</i> from ⁹⁸ Nb β ⁻ decay (51.1 min) and 350.81 <i>18</i> from (α,2nγ).
							I _γ : from (α ,2nγ). Other: I(350.8γ)/I(1063.7γ)=15 6/100 6 from ⁹⁸ Nb β^- decay (51.1 min), is discrepant.
		557.5 1	20 6	2017.53 3-			E_{γ} : weighted average of 557.5 <i>l</i> from ⁹⁸ Nb β ⁻ decay (51.1 min) and 557.08 <i>39</i> from (α,2nγ).
							I _γ : from (α ,2nγ). Other: I(557.5γ)/I(1063.7γ)=39 6/100 6 from ⁹⁸ Nb β ⁻ decay (51.1 min).
		1063.6 6	91 4	1510.047 4+	M1+E2	-2.7 +8-15	E_{γ} : unweighted average of 1063.0 2 from ⁵ Nb β^- decay (51.1 min) and 1064.27 18 from (α ,2n γ).
2612 4	0^+	1825.0.5	100	787 384 2+	(F2)		I_{γ} : IIOIII ($(\alpha, 2\pi\gamma)$). E : from ($(\alpha, 2\pi\gamma)$) Other: 1821 0 6 in β^{-} (2.86 s)
2620.01	3+	1187 5 3	50.9	1432 210 2+	M1+F2	-1.0 + 10 - 5	E_{γ} . Hold $(a, 2\pi)$). Other, 1821.00 m β^{-} (2.80 s).
2020.01	5	1107.5 5	50 7	1152.210 2	1111 1 122	1.0 110 5	1187.50 43 from $(\alpha, 2n\gamma)$, 1187.6 3 from (n, γ) E=th, and 1187.6 3 from $(n, n'\gamma)$.
							I _γ : weighted average of 80 50 from 98 Nb β^- decay (51.1 min), 49 18 from (n,γ) E=th, and 49 9 from (n,n'γ). Others: 9.7 7 from (α,2nγ) is discrepant.
		1832.7 2	100 8	787.384 2+	M1+E2	-0.54 13	E _γ : weighted average of 1833.0 <i>3</i> from ⁹⁸ Nb β^- decay (51.1 min), 1832.93 <i>33</i> from (<i>α</i> ,2nγ), 1833.0 <i>3</i> from (n,γ) E=th, and 1832.4 2 from (n,n'γ).
		1886.3 ^b 7	40 18	734.75 0 ⁺	[M3]		E_{γ} , I_{γ} : from (n, γ) E=th. Implied M3 for this transition makes it questionable.
2620.78	5-	603.28 <i>12</i>	63.3 12	2017.53 3-	(E2)		E _γ : weighted average of 603.28 <i>10</i> from ⁹⁸ Nb β^- decay (51.1 min), 603.25 <i>17</i> from (α ,2n γ), 603.33 <i>12</i> from (n, γ) E=th, 603.1 <i>4</i> from (n,n' γ), and 603.1 <i>5</i> from (³⁰ Si,X γ).
							I _γ : weighted average of 66 4 from ⁹⁸ Nb β^- decay (51.1 min), 63.3 12 from (α,2nγ), 63 5 from (n,γ) E=th, 49 10 from (n,n'γ), and 55 11 from (³⁰ Si,Xγ).
							Mult.: $\delta(M3/E2) = -0.08 \ 11 \ \text{from} \ (\alpha, 2n\gamma).$
		1110.77 7	100.0 23	1510.047 4+	(E1)		E _γ : weighted average of 1110.76 <i>10</i> from ⁹⁸ Nb β ⁻ decay (51.1 min), 1110.75 <i>16</i> from (α,2nγ), 1110.81 <i>14</i> from (n,γ) E=th, 1110.78 7 from (n,n'γ), and 1110.3 5 from (³⁰ Si,Xγ).
2644 79	$(1, 2^{+})$	$1212.7b_{5}$	100.26	1422 210 2+			Mult. $\theta(M2/E1) = -0.05 \ 10 \ \text{from} \ (\alpha, 2\pi\gamma), \ D \ \text{also from} \ \gamma(\theta) \ \text{in} \ (\pi, \pi, \gamma).$
2044./!	$(1,2^{+})$	1212.7° 3	100 30	1432.210 2			$E_{\gamma,1\gamma}$: HOIII (Π,Π,Υ) OIIIY.
2670 00	6+	1909.6 0	<54	/34./5 0'			$E_{\gamma}I_{\gamma}$: Irom (n,n' γ) only. E : weighted everges of 172.44.10 from ⁹⁸ NIb θ^{-} decay (51.1 min) and
2078.88	0	172.44 10	4.1 J	2300.38 3'			E_{γ} , weighted average of 1/2.44 10 from 2010 β decay (51.1 min) and 172.47 26 from (α ,2n γ).
							r_{γ} . weighted average of 4.0 5 from (α 2n γ)
		335.255 23	53.0 8	2343.62 6+	(M1(+E2))	-0.01 1	$\alpha(K)=0.00897 \ 13; \ \alpha(L)=0.001029 \ 15; \ \alpha(M)=0.000184 \ 3 \ \alpha(N)=2.80\times10^{-5} \ 4; \ \alpha(O)=1.580\times10^{-6} \ 23$

20

						Adopted L	evels, Gamn	nas (continued)
						γ	(⁹⁸ Mo) (cont	inued)
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	Comments
		345.53 10	0.5 1	2333.46	4+			E _γ : weighted average of 335.258 20 from ⁹⁸ Nb β ⁻ decay (51.1 min), 335.15 16 from (α,2nγ), and 334.5 5 from (³⁰ Si,Xγ). I _γ : weighted average of 53.4 11 from ⁹⁸ Nb β ⁻ decay (51.1 min) and 52.8 8 from (α,2nγ). Other: 180 70 from (³⁰ Si,Xγ).

⁹⁸₄₂Mo₅₆-21

L

					Adopted L	Adopted Levels, Gammas (continued)							
					<u> </u>	(⁹⁸ Mo) (contin	nued)						
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α [@]	Comments					
2678.88	6+	455.04 <i>10</i> 1168.826 <i>20</i>	4.6 2 100.0 21	2223.862 4 ⁺ 1510.047 4 ⁺	(E2)			E _γ : weighted average of 1168.827 20 from ⁹⁸ Nb β^- decay (51.1 min), 1168.81 16 from (α,2nγ), and 1168.5 5 from (³⁰ Si,Xγ). δ (M3/E2)=+0.01 4 from (α,2nγ).					
2700.68	2+	493.4 6 1190.8 ^{&b} 2 1913.5 2	8 6 <467 ^{&} 100 20	2206.61 2 ⁺ 1510.047 4 ⁺ 787.384 2 ⁺	(M1(+E2))	-0.14 14		 I_γ: other: 100 21 from (³⁰S1,Xγ). E_γ,I_γ: from (n,γ) E=th. E_γ,I_γ: from ⁹⁸Nb β⁻ decay (51.1 min) only. B(M1)(W.u.)>0.002 E_γ: weighted average of 1913.4 4 from ⁹⁸Nb β⁻ decay (51.1 min), 1913.60 33 from (α,2nγ), 1913.1 3 from (n,γ) E=th, and 1913.6 2 from (n,n'γ). 					
2733.4 2738.2	2+ (6,7)	1946.0 <i>3</i> 394.3 <i>5</i>	100 100	787.384 2 ⁺ 2343.62 6 ⁺	(M1(+E2))	-0.09 15		I _{γ} : from (n,n' γ) E=th. E _{γ} : from (α ,2n γ) only. E _{γ} : weighted average of 394.4 5 from (α ,2n γ) and 394.2 5 from (³⁰ S; X ₂)					
2767.68	4+	146.6 ^b 3 347.94 10 434.27 6 543.83 10	4.0 <i>15</i> 6.9 6 35 2 17 <i>1</i>	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$				I _{γ} : weighted average of 34.9 9 from ⁹⁸ Nb β^- decay (51.1 min) and 25 5 from (n, γ) E=th.					
		561.21 662.89 <i>15</i> 750.1 <i>2</i> 1009.3 <i>1</i> 1257.59 <i>5</i> 1335.45 <i>5</i>	≈2 5.2 15 0.9 3 1.4 12 29 1 38.3 6	2206.61 2 ⁺ 2104.72 3 ⁺ 2017.53 3 ⁻ 1758.49 2 ⁺ 1510.047 4 ⁺ 1432.210 2 ⁺									
		1980.4 <i>3</i>	100 1	787.384 2+	(E2)			E _γ : unweighted average of 1980.17 5 from ⁹⁸ Nb β^- decay (51.1 min), 1981.20 32 from (α,2nγ), 1979.9 3 from (n,γ) E=th, and 1980.3 3 from (n,n'γ).					
2795.61	4-	778.01 20 1285.53 <i>14</i>	38 <i>3</i> 100	2017.53 3 ⁻ 1510.047 4 ⁺	M1+E2 (E1)	-0.37 15		Construction for the factor of the factor					
2813.3	2+	192.36 ^{<i>ab</i>} 14 306.89 ^{<i>ab</i>} 10	a a	2620.01 3 ⁺ 2506.38 5 ⁺	[M3]		0.222	$\alpha(K)=0.188 \ 3; \ \alpha(L)=0.0280 \ 4; \ \alpha(M)=0.00512 \ 8 \ \alpha(N)=0.000767 \ 11; \ \alpha(O)=3.82\times10^{-5} \ 6 \ \text{Implied mult}=M3 \ \text{makes this transition questionable or very weak.}$					
		469.90 ^b 14		2343.62 6+	[E4]			This γ , seen in β^- decay (51.1 min), is questionable in view of unlikely mult=E4 involved.					
		2025.5 4		787.384 2+	M1+E2	-4 +2-57		E_{γ} : γ from $(\alpha, 2n\gamma)$ only.					

⁹⁸₄₂Mo₅₆-22

L

 $^{98}_{42}\mathrm{Mo}_{56}$ -22

From ENSDF

							Adopted Lo	evels, Gammas (co	ontinued)	
							<u> </u>	⁹⁸ Mo) (continued))	
	E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α@	Comments
	2836.83	6+	157.87 10	100.0 25	2678.88	6+				E _γ : weighted average of 157.88 <i>10</i> from ⁹⁸ Nb β^- decay (51.1 min), 157.87 <i>16</i> from (α ,2n γ), and 157.6 <i>4</i> from (n,n' γ).
			330.34 10	28 3	2506.38	5+	M1+E2	-0.24 6	0.01097 25	α(K)=0.00963 22; α(L)=0.00111 3; α(M)=0.000199 6 α(N)=3.03×10-5 8; α(O)=1.69×10-6 4 Eγ: weighted average of 330.37 10 from 98Nb β- decay (51.1 min) and 330.18 23 from (α,2nγ). Iγ: weighted average of 29.3 25 from 98Nb β- decay (51.1 min) and 23 6 from (α,2nγ).
			493.16 <i>10</i>	26 6	2343.62	6+	M1+E2	-0.29 15		E _γ : weighted average of 493.18 <i>10</i> from ⁹⁸ Nb β^- decay (51.1 min) and 493.09 <i>20</i> from (α ,2n γ). I _γ : weighted average of 29 7 from ⁹⁸ Nb β^- decay (51.1 min) and 23.6 from (α ,2n γ)
			1326.7	75	1510.047	4+				init) and 25 0 from (0,217).
	2854.15	(8+)	282.2 ^b 5 510.47 <i>16</i>	4 2 100 <i>14</i>	2570.9? 2343.62	(6,7,8) 6 ⁺				E_{γ} , I_{γ} : from (α , 2n γ) only. E_{γ} : weighted average of 510.45 <i>16</i> from (α , 2n γ) and 510.7 <i>5</i> from (30 Si, $X\gamma$).
2	2856.2	4+	177.4 <mark>b</mark> 2	100	2678.88	6+				
3	2871.1	2,3	2083.7 4	100	787.384	2+	D+Q			δ (Q/D)=+0.06 <i>10</i> for J=3, -3.7 + <i>1</i> 5-58 for J=2 from $\gamma\gamma(\theta)$ in (α ,2n γ).
	2896.79	5+	791.8 3	100	2104.72	$3^+_{4^+}$	M1 . E2			
	2905.2	4+	1386.84 19	96 4 100	787.384	$\frac{4}{2^+}$	M1+E2 [E2]	+3.2 +8-3		$B(E_2)(W_{11}) > 3.0$
	270012	•	211,107	100	1011001	-	[]			E_{γ} : from $(\alpha, 2n\gamma)$.
	2915.8	2+	2128.4 4	100	787.384	2+	M1+E2	-0.71 +37-57		B(M1)(W.u.)>0.0063; B(E2)(W.u.)>0.36 E _{γ} : weighted average of 2129.03 45 from (α ,2n γ) and 2128 1.3 from (α , n'_{γ})
	2962.45	3-	944.7 2	19 5	2017.53	3-				E_{γ} : weighted average of 944.39 44 from (α ,2n γ) and 944.7 2 from (n , γ) E=th.
			1452.4 3	100	1510.047	4 ⁺				I _{γ} : from (α ,2n γ). Other: 118 30 from (n, γ) E=th. E _{γ} : weighted average of 1452.69 42 from (α ,2n γ) and 1452.3 3 from (n, γ) E=th.
			2176 4 5	83 11	787 384	2+				I_{γ} : from (α ,2n γ). Other: 100 30 from (n, γ) E=th. E. L : from (α ,2n γ) only
	2976.89	4^{+}	557.1 4	44 28	2419.63	$\frac{2}{4^{+}}$				$E_{\gamma}I_{\gamma}$: from $(\alpha,2n\gamma)$ only. $E_{\gamma}I_{\gamma}$: from (n,γ) E=th. γ also from $(\alpha,2n\gamma)$.
			753.0	1.1 6	2223.862	4+				
			1466.84 <i>10</i>	100 3	1510.047	4+	(M1(+E2))	+0.05 17		B(M1)(W.u.)>0.0056 E _γ : weighted average of 1466.79 <i>10</i> from ⁹⁸ Nb β ⁻ decay (51.1 min), 1466.96 <i>24</i> from (α,2nγ), and 1467.1 <i>3</i> from (n,γ) E=th.
			2189.4 5	1.1 6	787.384	2+	[E2]			B(E2)(W.u.)>0.0018
	3010.91?		2223.5 ^b 2	100	787.384	2+				

From ENSDF

⁹⁸₄₂Mo₅₆-23

I

					Adopted	Levels, Gai	nmas (continued)
						γ(⁹⁸ Mo) (co	ontinued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	Comments
3020.42	5-	399.60 10	100 6	2620.78 5-	(M1(+E2))	+0.06 15	E_{γ} : weighted average of 399.65 <i>10</i> from ⁹⁸ Nb β ⁻ decay (51.1 min) and 399.43 <i>18</i> from (α.2nγ).
		676.84 10	33.6 24	2343.62 6+	(E1)		E_{γ} : weighted average of 676.87 <i>10</i> from ⁹⁸ Nb β^{-} decay (51.1 min) and 676.66 26 from (α 2ny)
							I _γ : weighted average of 34 6 from ⁹⁸ Nb β^- decay (51.1 min) and 33.5 24 from (α,2nγ). $\delta(M2/E1) = -0.01 \ 10 \ \text{from} \ (\alpha,2n\gamma).$
		1002.9 2	24.4 10	2017.53 3-	(E2)		E_{γ} : weighted average of 1002.9 2 from ⁹⁸ Nb β^- decay (51.1 min) and 1002.85 31 from (α 2nx)
							I _γ : weighted average of 31 <i>13</i> from ⁹⁸ Nb β^- decay (51.1 min) and 24.4 <i>10</i> from (α,2nγ). δ (M3/E2)=+0.03 5.
		1510.4	<94	1510.047 4+			
3021.75	4+	254.05 14	0.4 2	2767.68 4+			
		688.23 10	6.2 4	2333.46 4+			
		797.88 10	12.4 6	2223.862 4+			
		815.5 3	0.8 4	2206.61 21			
		917.05 13	1.4 4	2104.72 3 ⁻			
		1004.31 10	1.90	2017.33 3 1758.40 2 ⁺			
		1511.68 2	100 1	1510.047 4+			E_{γ} : weighted average of 1511.68 2 from ⁹⁸ Nb β^- decay (51.1 min), 1511.65 34 from (α 2n γ) and 1512.0.3 from (n γ) E=th
		1589.62 10	2.9.2	1432.210 2+			54 from $(a, 2hy)$, and 1512.05 from (h, y) L-u.
		2234.31 10	3.7 2	787.384 2+			
3026.2	5+	1516.19 25	100	1510.047 4+	M1+E2	+0.27 6	
3045.89	4^{+}	1287.2 <i>3</i>	100 30	1758.49 2+			E_{γ}, I_{γ} : from (n, γ) E=th.
		2258.7 4	44 21	787.384 2+			$E_{\gamma}I_{\gamma}$: from (n,γ) E=th.
3050.92	4+	544.5 4	4.8 14	2506.38 5+			
		631.4 2	2.4 10	2419.63 4+			
		717.5 3	14 3	2333.18 2+	[E2]		B(E2)(W.u.) > 61
		1540.93 8	100 2	1510.047 4+	(M1(+E2))	-0.20 27	B(M1)(W.u.) > 0.024
		1/10 75 11	11 4 7 4	1422 210 2+			E_{γ} : weighted average of 1540.92 5 from ³⁶ Nb β^{-} decay (51.1 min), 1540.47 52 from (α ,2n γ), and 1541.6 3 from (n, γ) E=th.
		2263.0.2	11.4 <i>14</i> 1.9 <i>3</i>	$1432.210 \ 2^{+}$ 787.384 2^{+}	[E2]		B(E2)(W.u.)>0.92 B(E2)(W.u.)>0.027
3067.70	(3 ⁻)	446.93 10	100 7	2620.78 5-	[22]		E _γ : weighted average of 446.91 <i>10</i> from ⁹⁸ Nb β^- decay (51.1 min), 446.78 <i>17</i> from (α,2nγ), 446.99 <i>13</i> from (n,γ) E=th, and 447.2 <i>3</i> from (n,n'γ).
		843.82 10	37 5	2223.862 4+			
3095.80	2+	1585.6 <mark>b</mark> 2	100	1510.047 4+			
3096.26	(7^{-})	241.7 <mark>b</mark> 5	11.5	2854.15 (8+)			$E_{\gamma} I_{\gamma}$; from $(\alpha, 2n\gamma)$ only.
	(*)	475.6 4	100 12	2620.78 5-	(E2)		E _γ : unweighted average of 476.35 <i>10</i> from ⁹⁸ Nb β ⁻ decay (51.1 min), 475.23 <i>17</i> from (α ,2n γ), and 475.3 <i>5</i> from (³⁰ Si,X γ). Mult.: δ (M3/E2)=+0.01 <i>3</i> from (α ,2n γ).

						Adopted	Levels, Gammas (continued)
							γ ⁽⁹⁸ Mo) (continued)
E _i (level)	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	\mathbf{J}_{f}^{π}	Mult. [‡]	Comments
3096.26	(7 ⁻)	752.77 23	80.9 <i>16</i>	2343.62	6+	(E1)	E _γ : unweighted average of 753.19 <i>14</i> from ⁹⁸ Nb β ⁻ decay (51.1 min), 752.41 <i>16</i> from (α ,2nγ), and 752.7 5 from (³⁰ Si,Xγ). I _γ : weighted average of 73 9 from ⁹⁸ Nb β ⁻ decay (51.1 min), and 81.2 <i>16</i> from (α ,2nγ). Other: 42 5 from (³⁰ Si,Xγ) is discrepant. Mult.: δ (M2/E1)=-0.01 4 from (α ,2nγ).
3103.13	$(2^+, 3, 4)$	335.4 2	100	2767.68	4^{+}		E_{γ} : from (n,γ) E=th only.
3108.80	$(2^+, 3, 4)$	1091.4 2	100	2017.53	3-		E_{γ} : weighted average of 1091.52 20 from (α .2n γ) and 1091.2 2 from (n, γ) E=th.
	(_ ,=,.,)	1598.4 3	24 4	1510.047	4+		E_{γ} : weighted average of 1599.50 33 from (α ,2n γ) and 1598.8 7 from (n, γ) E=th. I_{γ} : from (α ,2n γ).
3155.56	(4^{+})	455.1 <i>3</i>	35 18	2700.68	2^{+}		$\dot{E}_{\gamma}, I_{\gamma}$: from (n, γ) E=th only.
		811.5 5	100 60	2343.62	6+		E_{γ}, I_{γ} : from (n, γ) E=th only.
		1050.8 4	70 60	2104.72	3+		E_{γ}, I_{γ} : from (n, γ) E=th only.
3165.89	4+	189.0 ^a 3	70 ^a 11	2976.89	4^{+}		
		746.28 12	22.6	2419.63	4^{+}		
		1061.25^{a} 13	30^{a} 3	2104 72	3+		
		1407 5 1	38.8	1758.49	2+		
		1655 87 10	100.6	1510.047	<u>7</u> +		
		2378 20 10	20.2	787 384	$\frac{1}{2^{+}}$		
2105 56	$(2^{-}2,4)$	200 88 15	27 2 07 12	2705 61	∠ 4-		\mathbf{E} , \mathbf{L} , from (\mathbf{n}, \mathbf{r}) \mathbf{E} th only
5195.50	(2, 5, 4)	399.00 IJ	87 IS 100 40	2795.01	4		E_{γ}, i_{γ} . Iroin (ii, γ) E=ui only.
2200.00		11/8.1 5	100 40	2017.53	3		E_{γ}, I_{γ} : from (n, γ) E=th only.
3208.99	(4',5)	530.42 14	100 31	26/8.88	6'		
		985.2 4	62 15	2223.862	4'		
3210.80	(4^{+})	$1190.8^{\&} 2$	<108	2017.53	3- 6+		E_{γ} : poor fit, level-energy difference=1191.5.
5210.00	(+)	1193.2 <i>3</i>	100 29	2017.53	3-		E_{γ}, I_{γ} . Hold $(n, \gamma) = 0$ only. E_{γ} : weighted average of 1193.09 30 from $(\alpha, 2n\gamma)$, 1193.3 3 from $(n, \gamma) = 0$ th, and 1193.1 4 from $(n, n'\gamma)$. L_{γ} : from $(n, \gamma) = 0$
3211 57	(4^{+})	443 6 3	052	2767 68	Δ^+		
0211.07	(,)	590.90.10	403	2620.78	5-		
		705 5 2	0.4.2	2506.38	5+		
		701.09.15	0.4 2	2410.63	J 4+		
		771.70 IJ 979 07 10	2.7 3	2419.03	4 1+		
		8/8.0/ 10	0.1.5	2355.40	4		
		1100.8 4	0.4 2	2104.72	3.		
		1194.02 10	5.6.3	2017.53	3		
		1701.505 20	100 1	1510.047	4+		E_{γ} : weighted average of 1701.503 20 from ⁵⁶ Nb β ⁻ decay (51.1 min), 1701.8 3 from (n,γ) E=th, and 1701.8 6 from (n,n'γ).
		2424.1 ⁰ 3	1.6 5	787.384	2^{+}		
3229.17	(4 ⁺)	415.5 4	13 6	2813.3	2+	[E2]	B(E2)(W.u.)>420 B(E2)(W.u.)>RUL=300 for E2 makes this low-energy transition questionable.
		885.58 10	100 13	2343.62	6^{+}	[E2]	B(E2)(W.u.)>130
		1718.8 6	38 6	1510.047	4+		E_{γ} : from (α,2nγ). I_{γ} : from ⁹⁸ Nb β ⁻ decay (51.1 min).

L

						<u>γ(⁹⁸Mo</u>) (continued)		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α [@]	Comments
3241.2	$(4^+ \text{ to } 7)$	562.3	100	2678.88	6+				
3257.86	1	3257.8 1	100	0.0	0^{+}	D			E_{γ} : from (γ, γ') .
3271.49	(8^{+})	416.8 5	13.2 19	2854.15	(8^{+})				E_{γ}, I_{γ} : from (³⁰ Si, X γ) only.
		927.94 17	100 7	2343.62	6+	Q			E_{γ} : weighted average of 927.95 <i>17</i> from (α ,2n γ) and
									927.9 5 from $({}^{30}\text{Si},X\gamma)$.
3323.58	(7-)	227.37 18	100	3096.26	(7-)	(M1(+E2))	-0.08 10	0.0276 10	α (K)=0.0242 9; α (L)=0.00282 13; α (M)=0.000505 22 α (N)=7.7×10 ⁻⁵ 4; α (O)=4.28×10 ⁻⁶ 13
		979.87 <i>23</i>	100 7	2343.62	6+				
3326.41	4+	819.95 10	23.7 17	2506.38	5+				
		906.86 10	50.8 17	2419.63	4+				E_{γ} : other: 906.1 3 from $(n,n'\gamma)$.
		992.88 5	100 3	2333.46	4 ⁺				E_{γ} : other: 903.6 9 from (n,n' γ).
		1102.66 10	43.2 17	2223.862	4 ⁺				
		1221.75 10	21.2 1/	2104.72	3'				
		1508.9 2	0.8 17	2017.33	3 2+				
		1816 37 10	39.8.17	1510.49	$\frac{2}{4^+}$				
		2538.91 10	5.6 5	787.384	2+				
3366.1?		1142.2 ^b 3	100	2223.862	4^{+}				
3394.50	(4^{+})	715.6 3	10 7	2678.88	6 ⁺				
	()	773.7 2	2.9 7	2620.78	5-				
		1061.25 ^a 13	3.6 ^a 3	2333.46	4+				
		1289.98 15	3.6 7	2104.72	3+				
		1377.6 ⁰ 7	1.0 7	2017.53	3-				
		1636.0 2	3.9 <i>3</i>	1758.49	2+				
		1884.40 5	100 1	1510.047	4+				E_{γ} : other: 1883.7 4 from (n,n' γ).
		2607.03 10	3.6 2	787.384	2+				
3400.92	4'	189.0 ⁴ 3	1.9" 15	3211.57	(4 ⁺)				
	. <u>.</u>	1057.62 ⁰ 10	100 8	2343.62	6+				
3403.95	(5 ⁻ ,6 ⁺)	192.36 ^{<i>u</i>} 14	9.1 ^{<i>u</i>} 3	3211.57	(4^{+})				
		306.89 ^{<i>ab</i>} 10	100 ^{<i>a</i>} 6	3096.26	(7-)				
3405.06	1	3405.0 1	100	0.0	0+	D			E_{γ} : from (γ, γ') .
3418.74	4+	1908.7 3	100 33	1510.047	4+				E_{γ} : weighted average of 1908.6 2 from ⁹⁸ Nb β ⁻ decay (51.1 min) and 1909.7 6 from (n,n'γ).
0455 15	(4+)	2631.3 3	20 7	787.384	2+				
3455.17	(4')	1035.5 3	2.7 14	2419.63	4' 4+				
		1121.0 3	/ 5	2333.40	4 · 4+				E
		1945.03 8	100.0 14	1510.047	4'				E_{γ} : weighted average of 1945.01 5 from ²⁶ Nb β decay (51.1 min), 1945.1 4 from (n, γ) E=th, and 1945.7 3 from (n,n' γ).
		2023.05 10	10.8 7	1432.210	2+				E_{γ} : other: 2024.2 2 from (n,n' γ). I _{γ} : other: 67 9 from (n,n' γ) is discrepant.
		2667.75 10	4.7 4	787.384	2+				/·····

 $^{98}_{42}\mathrm{Mo}_{56}$ -26

I

⁹⁸₄₂Mo₅₆-26

From ENSDF

					Ad	opted Lev	rels, Gammas (continued)
						$\gamma(^{98}$	Mo) (continued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [‡]	Comments
3457.07	1	3457.0 1	100	0.0	0+	D	
3465.95	(4^{+})	959.8 5	84 26	2506.38	5^+		
		$1122.32\ 10$	100 20	2343.62	0' 4+		
3501.7	(4^{+})	2714.3 3	100	787.384	2^{+}		
3516.75	(4^+)	350.92 10	100 5	3165.89	- 4 ⁺		
		679.68 10	27 5	2836.83	6+		
		1097.2 2	53	2419.63	4^+ 2 ⁺		
		1310.1 2	32.5	2335.18	$\frac{2}{2^{+}}$		
		1499.3 5	10 5	2017.53	3-		
		1758.7	12 3	1758.49	2^+		
		2006.6 3	29.5	1510.047	4' 2+		E : noor fit level energy difference-2720 3
3527.4	(8.9^{-})	431.5.5	60 10	3096.26	(7^{-})		E_{γ} . poor in, receivenergy unrefered = 2729.5. E_{γ} . From (³⁰ Si X γ) only.
	(0,5)	788.9 5	100 4	2738.2	(6,7)		E_{γ},I_{γ} : from (³⁰ Si,X γ) only.
3541.28?		862.40 ^b 14	100	2678.88	6+		
3547.51	(4^{+})	1204.15 16	32 7	2343.62	6^+		E , maan fit lavel energy difference 1214.04
		1213.30 13	30 / 100 7	2333.40	4^{+} 4^{+}		E_{γ} : poor fit, level-energy difference=1214.04. E_{γ} : poor fit, level-energy difference=1323.64. Other: 1323.9.4 from (n_{γ}) E=th
		1442.6 3	21 7	2104.72	3+		$D_{\gamma} = poor n, poor onergy anterence = respect to oner = respect to room (n, \gamma) = n n$
		2037.39 10	29 3	1510.047	4+		
3551 35	1	2760.02 10	30 2	787.384	2+ 0+	D	
5551.55	1	3551.2 1	100.0 16	0.0	0^{+}	D	
3554.87?		2767.45 <mark>b</mark> 11	100	787.384	2+		
3557.0	(4 ⁺)	1213.4 4	100	2343.62	6+		
3565.65	(4^{+})	514.78 13	48 14	3050.92	4^+		
		1341.74 10	100 5	2223.862	4 · 3+		
		2055.5 4	19 5	1510.047	4 ⁺		
3598.29	(4 ⁺)	194.1 5	25 13	3403.95	(5 ⁻ ,6 ⁺)		
2601.1	(1 + 56)	1254.69 16	100 25	2343.62	6+ 6+		
3001.1	(4 ,3,0)	1257.2	100 25	2343.62	6 ⁺		
3617.12?		1273.5 ^b 2	100	2343.62	6+		
3620.10	(3 ⁻ ,4)	1515.5 2	100 25	2104.72	3+		
2(22.55	4	1602.0 4	25 13	2017.53	3-		
3623.57	4^{+}	572.6 5	21 <i>12</i> 15 6	3050.92 2678 88	4^{+} 6 ⁺		
		1048.70 10	76 9	2574.86	4 ⁺		
		1117.1 2	24 9	2506.38	5+		

L

 $^{98}_{42}\mathrm{Mo}_{56}$ -27

From ENSDF

$\gamma(^{98}Mo)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^π	Mult. [‡]	Comments
3623.57	4+	1291.4 4 1399.83 17 1417.0 4 1518.79 10 2113.41 10 2191.1 5 2836.21 11	24 12 24 3 32 9 56 6 100 12 14 2 15 2	2333.46 2223.862 2206.61 2104.72 1510.047 1432.210 787.384	$ \begin{array}{r} 4^+ \\ 4^+ \\ 2^+ \\ 3^+ \\ 4^+ \\ 2^+ \\ 2^+ \end{array} $		E_{γ} : poor fit, level-energy difference=1290.11.
3656.7	(9 ⁻)	385.1 <i>5</i> 560.5 <i>5</i>	69 <i>14</i> 100 <i>12</i> 20 5	3271.49 3096.26	(8^+) (7^-)		E_{γ} : from $(\alpha, 2n\gamma)$ and $({}^{30}Si, X\gamma)$. I_{γ} : from $({}^{30}Si, X\gamma)$. E_{γ} : weighted average of 560.7 5 from $(\alpha, 2n\gamma)$ and 560.2 5 from $({}^{30}Si, X\gamma)$. I_{γ} : from $({}^{30}Si, X\gamma)$. E_{γ} L is from $({}^{30}Si, X\gamma)$.
3703.98 3711.9 3723.7	1 5 ⁻ 4 ⁺	802.6 3 3703.9 2 2201.8 7 512 <i>I</i> 887.0 5 1389.8 4 2936.8 5	50 5 100 100 33 5 3 6.7 17 1.0 3	2834.13 0.0 1510.047 3211.57 2836.83 2333.46 787.384	(8^{+}) 0^{+} 4^{+} (4^{+}) 6^{+} 4^{+} 2^{+}	D	E_{γ}, I_{γ} : from (~ SI, $X\gamma$).
3737.79	4+	900.97 <i>10</i> 1394.15 <i>12</i>	79 <i>14</i> 100 <i>14</i>	2836.83 2343.62	6 ⁺		E _γ : other: 900.96 <i>15</i> from (n,n'γ). I _γ : other: <327 from (n,n'γ). E _γ : weighted average of 1394.07 <i>10</i> from ⁹⁸ Nb β^- decay (51.1 min), 1394.2 2 from (n,γ) E=th, and 1394.7 3 from (n,n'γ). I _γ : other: 100 24 from (n,n'γ).
3768.7 3777.88 3806.08	(9 ⁻) 4 ⁺ 1	672.4 <i>5</i> 2267.8 <i>1</i> 3806 0 <i>2</i>	100 100 100	3096.26 1510.047 0.0	(7^{-}) 4^{+} 0^{+}	D	
3809.20	$(4,5,6^+)$	408.4^{a} 2 2299.10 10	$<23^{a}$	3400.92 1510.047	4^+ 4^+	D	I_{γ} : from relative I_{γ} of 408.4 γ from 3809.6 level and that only a small fraction of the intensity of the 408.4 γ doublet may belong here.
3809.39	(4,5)	408.4 ⁴⁷ 2 1189.3 <i>3</i> 1792.05 <i>10</i>	40 <i>12</i> 100 <i>8</i>	2620.78 2017.53	4 5 ⁻ 3 ⁻		
3836.98 3842.77 3857.68	$(4,5,6^+)$	3836.9 <i>I</i> 2332.7 ^b 2	100 100 100	0.0 1510.047	0^+ 4^+ 0^+	D	
3937.08 3937.08 3944.09 3947.5	(1) (4^+)	3937.0 <i>I</i> 39344.0 <i>I</i> 1268.6 <i>3</i>	100 100 100	0.0 0.0 2678.88	0^+ 0^+ 6^+	D D (D)	
3964.33 3981.81	(4 ⁺ ,5,6) 3 ⁻	1285.4 <i>3</i> 1620.70 <i>11</i> 1877.3 <i>4</i>	25 <i>10</i> 100 <i>20</i> 30 <i>20</i>	2678.88 2343.62 2104.72	6 ⁺ 6 ⁺ 3 ⁺		
3998.62	5-	2471.72 <i>10</i> 1377.5 <i>5</i>	100 <i>10</i> 30 <i>20</i>	1510.047 2620.78	4+ 5-		

28

⁹⁸₄₂Mo₅₆-28

L

					A	dopted L	evels, Gammas (continued)
						γ	(⁹⁸ Mo) (continued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	Comments
3998.62	5-	2488.55 10	100 10	1510.047	4+		
4020.6	(2)	4020.5 5	100	0.0	0^{+}	(Q)	
4041.6	(1)	4041.5 9	100	0.0	0^{+}	(D)	
4060.62?	$(4,5,6^+)$	2550.54 ^b 12	100	1510.047	4+		
4076.43	$(4,5,6^+)$	2566.35 10	100	1510.047	4+		
4079.8	1	4079.7 4	100	0.0	0^{+}	D	
4102.3	(2)	4102.2 5	100	0.0	0^{+}	(Q)	
4103.35?	(4^{+})	2671.1 ⁰ 2	100	1432.210	2+		
4149.2	(10^{+})	877.9 5	100 13	3271.49	(8^{+})		E_{γ} : weighted average of 878.1 5 from (α ,2n γ) and 877.6 5 from (30 Si,X γ).
							I_{γ} : from (³⁰ Si,X γ).
		1294.9 5	23 <i>3</i>	2854.15	(8^+)		E_{γ}, I_{γ} : from (³⁰ Si, X γ).
4170.8	1	4170.7 8	100	0.0	0^{+}	D	
4179.90	(1)	4179.8 2	100	0.0	0^{+}	(D)	
4190.2	(10, 11)	662.7 5	100	3527.4	(8,9 ⁻)		
4231.1	1	4231.0 4	100	0.0	0^{+}	D	
4252.6	(1)	4252.5 12	100	0.0	0+	(D)	
4258.8	1	4258.7 5	100	0.0	0^+	D	
4267.90	1	4267.8 2	100	0.0	0^{+}	D (D)	
4295.40	(1)	4295.3 I 4261 7 I	100	0.0	0^{+}	(D)	
4301.80	(1) (1)	4301.7 1	100	0.0	0^{+}	(D)	
4391.21	(1)	4391.17	100	0.0	0^{+}	(D) D	
4423.9	(11^{-})	767.2.5	100	3656.7	(9 ⁻)	D	
4440.12	(11)	200.8^{b} 5	100	11/0 2	(10^{+})		$\mathbf{E} \cdot \mathbf{from} (\alpha 2\mathbf{n} \alpha)$ only
4440.11	(11^{-})	290.8 J	100	4149.2	(10^{-})		E_{γ} . Holli (α ,2117) only. E : weighted average of 760.1.5 from (α ,2na) and 768.0.5 from (30 Si Ya)
4543 31	(11)	4543 2 2	100	0.0	(9)	D	E_{γ} . weighted average of 709.1.5 from (α ,21 γ) and 700.9.5 from (-51 , $X\gamma$).
4581.6	(1)	4581 5 7	100	0.0	0^{+}	(D)	
4590.62	1	4590.5 1	100	0.0	0^{+}	D	
4599.3	1	4599.2 5	100	0.0	0^{+}	D	
4609.5?		169.4 ^b 5	100	4440.1?			F_{α} ; from $(\alpha, 2n\gamma)$ only.
4616.2	1	4616.1 5	100	0.0	0^{+}	D	<i>Ly</i> . nom (<i>a</i> , <i><i>Li</i>/) only.</i>
4654.3	(1)	4654.2 4	100	0.0	0^{+}	(D)	
4812.73	1	4812.6 2	100	0.0	0^{+}	D	
4837.53	1	4837.4 <i>1</i>	100	0.0	0^{+}	D	
4902.83	1	4902.7 1	100	0.0	0^{+}	D	
4993.6	(12,13)	803.4 5	100	4190.2	(10,11)		
5008.6	1	5008.5 <i>3</i>	100	0.0	0^{+}	D	
5028.64	1	5028.5 2	100	0.0	0+	D	
5047.0	(12^{+})	897.8 5	100	4149.2	(10^+)	D	
5050.34	1	5050.2 I	100	0.0	0'	D	
5121 4	1	JU81.0 2	100	0.0	0+	D	
5121.4	1	5121.5 5	100	0.0	0.		

⁹⁸₄₂Mo₅₆-29

From ENSDF

⁹⁸₄₂Mo₅₆-29

L

$\gamma(^{98}Mo)$ (continued)

E_i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_f J_f^{\pi}$	Mult. [‡]
5134.1	(1)	5134.0 11	100	0.0 0+	(D)	5716.1	1	5715.9 4	100	0.0 0+	D
5147.6	1	5147.5 <i>3</i>	100	$0.0 \ 0^+$	D	5725.6	1	5725.4 5	100	$0.0 0^+$	D
5165.15	1	5165.0 2	100	$0.0 0^+$	D	5732.9	1	5732.7 6	100	$0.0 0^+$	D
5174.6	(2)	5174.5 12	100	$0.0 \ 0^+$	(Q)	5741.48	1	5741.3 <i>1</i>	100	$0.0 \ 0^+$	D
5195.5	1	5195.4 <i>4</i>	100	$0.0 \ 0^+$	D	5754.1	1	5753.9 9	100	$0.0 \ 0^+$	D
5215.0	(2)	5214.9 5	100	$0.0 \ 0^+$	(Q)	5764.7	1	5764.5 <i>3</i>	100	$0.0 \ 0^+$	D
5225.5	(1)	5225.4 7	100	$0.0 \ 0^+$	(D)	5775.98	1	5775.8 2	100	$0.0 \ 0^+$	D
5236.1	1	5235.9 9	100	$0.0 \ 0^+$	D	5791.8	1	5791.6 5	100	$0.0 \ 0^+$	D
5244.55	(1)	5244.4 2	100	$0.0 \ 0^+$	(D)	5801.4	1	5801.2 <i>3</i>	100	$0.0 \ 0^+$	D
5267.7	(2)	5267.5 6	100	$0.0 \ 0^+$	(Q)	5811.38	1	5811.2 2	100	$0.0 \ 0^+$	D
5312.6	1	5312.4 <i>3</i>	100	$0.0 \ 0^+$	D	5828.59	1	5828.4 2	100	$0.0 \ 0^+$	D
5314.4	(13^{-})	776.7 5	100	4537.7 (11 ⁻)		5856.9	1	5856.7 <i>3</i>	100	$0.0 \ 0^+$	D
5315.3	(13^{-})	891.4 5	100	4423.9 (11-)		5889.4	1	5889.2 6	100	$0.0 \ 0^+$	D
5324.0	(1)	5323.8 5	100	$0.0 0^+$	(D)	5906.6	1	5906.4 7	100	$0.0 \ 0^+$	D
5346.66	1	5346.5 2	100	$0.0 \ 0^+$	D	5916.99	1	5916.8 2	100	$0.0 \ 0^{+}$	D
5354.66	1	5354.5 2	100	$0.0 \ 0^+$	D	5925.0	(14^{+})	878.0 <i>5</i>		5047.0 (12 ⁺)	
5362.7	(1)	5362.5 8	100	$0.0 \ 0^+$	(D)	5959.79	1	5959.6 2	100	$0.0 \ 0^+$	D
5386.26	1	5386.1 2	100	$0.0 \ 0^+$	D	5972.80	1	5972.6 2	100	$0.0 \ 0^+$	D
5397.46	1	5397.3 <i>1</i>	100	$0.0 \ 0^+$	D	5984.10	1	5983.9 2	100	$0.0 \ 0^+$	D
5412.6	1	5412.4 <i>4</i>	100	$0.0 \ 0^+$	D	5993.0	(1)	5992.8 8	100	$0.0 \ 0^+$	(D)
5432.9	1	5432.7 6	100	$0.0 \ 0^+$	D	5999.7	(1)	5999.5 8	100	$0.0 \ 0^+$	(D)
5442.2	1	5442.0 6	100	$0.0 \ 0^+$	D	6022.10	1	6021.9 2	100	$0.0 \ 0^{+}$	D
5450.5	1	5450.3 <i>4</i>	100	$0.0 \ 0^+$	D	6031.90	1	6031.7 <i>1</i>	100	$0.0 \ 0^+$	D
5458.2	1	5458.0 5	100	$0.0 \ 0^+$	D	6046.3	1	6046.1 <i>4</i>	100	$0.0 \ 0^{+}$	D
5482.36	1	5482.2 <i>1</i>	100	$0.0 \ 0^+$	D	6065.70	1	6065.5 <i>1</i>	100	$0.0 \ 0^+$	D
5492.4	(1)	5492.2 <i>3</i>	100	$0.0 \ 0^+$	(D)	6076.7	(1)	6076.5 7	100	$0.0 \ 0^+$	(D)
5508.9	1	5508.7 <i>3</i>	100	$0.0 \ 0^+$	D	6101.6	1	6101.4 4	100	$0.0 \ 0^+$	D
5519.1	1	5518.9 7	100	$0.0 \ 0^+$	D	6110.20	(1)	6110.0 <i>1</i>	100	$0.0 \ 0^+$	(D)
5528.2	1	5528.0 4	100	$0.0 \ 0^+$	D	6120.51	(1)	6120.3 2	100	$0.0 \ 0^+$	(D)
5544.1	(1)	5543.9 18	100	$0.0 \ 0^+$	(D)	6133.0	(15^{-})	817.7 5	100	5315.3 (13 ⁻)	
5552.7	(1)	5552.5 8	100	$0.0 \ 0^+$	(D)	6145.1	1	6144.9 <i>18</i>	100	$0.0 \ 0^+$	D
5563.27	1	5563.1 2	100	$0.0 \ 0^+$	D	6172	1	6172 <i>3</i>	100	$0.0 \ 0^+$	D
5579.2	1	5579.0 4	100	$0.0 \ 0^+$	D	6183.2	(1)	6183.0 8	100	$0.0 \ 0^+$	(D)
5588.4	(1)	5588.2 15	100	$0.0 \ 0^+$	(D)	6220.1	(1)	6219.9 <i>11</i>	100	$0.0 \ 0^+$	(D)
5595.6	1	5595.4 10	100	$0.0 \ 0^+$	D	6234.5	(1)	6234.3 10	100	$0.0 \ 0^+$	(D)
5615.3	1	5615.1 12	100	$0.0 \ 0^+$	D	6247.1	(1)	6246.9 <i>3</i>	100	$0.0 \ 0^+$	(D)
5626.1	1	5625.9 4	100	$0.0 \ 0^+$	D	6266.0	(1)	6265.8 7	100	$0.0 \ 0^+$	(D)
5638.07	1	5637.9 <i>1</i>	100	$0.0 \ 0^+$	D	6315.9	1	6315.7 <i>3</i>	100	$0.0 \ 0^+$	D
5654.38	1	5654.2 2	100	$0.0 \ 0^+$	D	6330.32	1	6330.1 2	100	$0.0 \ 0^+$	D
5664.6	1	5664.4 <i>3</i>	100	$0.0 \ 0^+$	D	6367.4	1	6367.2 4	100	$0.0 \ 0^+$	D
5678.8	(2)	5678.6 14	100	$0.0 \ 0^+$	(Q)	6379.2	1	6379.0 8	100	$0.0 \ 0^+$	D
5686.88	1	5686.7 2	100	$0.0 \ 0^+$	D	6388.3	1	6388.1 7	100	$0.0 \ 0^+$	D
5708.2	1	5708.0 6	100	$0.0 \ 0^+$	D	6397.9	1	6397.7 5	100	$0.0 \ 0^+$	D
						-					

30

$\gamma(^{98}Mo)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \ \mathbf{J}_f^{\pi}$	Mult. [‡]	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [‡]
6419.9	1	6419.7 11	100	$0.0 \ 0^+$	D	7128.0	1	7127.7 7	100	$0.0 0^+$	D
6438.7	1	6438.5 10	100	$0.0 \ 0^+$	D	7142.38	1	7142.1 2	100	$0.0 0^+$	D
6451.23	(1)	6451.0 2	100	$0.0 \ 0^+$	(D)	7156.8	1	7156.5 <i>3</i>	100	$0.0 0^+$	D
6465.8	ì	6465.66	100	$0.0 \ 0^+$	D	7169.6	1	7169.3 5	100	$0.0 0^+$	D
6473.4	1	6473.2 <i>3</i>	100	$0.0 \ 0^+$	D	7182.1	1	7181.8 <i>3</i>	100	$0.0 0^+$	D
6491.8	1	6491.66	100	$0.0 \ 0^+$	D	7192.3	1	7192.0 8	100	$0.0 \ 0^+$	D
6511.6	(1)	6511.4 <i>11</i>	100	$0.0 \ 0^+$	(D)	7204.6	1	7204.3 5	100	$0.0 0^+$	D
6522.3	(1)	6522.1 10	100	$0.0 \ 0^+$	(D)	7258.4	1	7258.1 7	100	$0.0 \ 0^+$	D
6530.6	1	6530.4 6	100	$0.0 \ 0^+$	D	7274.4	1	7274.1 4	100	$0.0 0^+$	D
6543.43	1	6543.2 2	100	$0.0 \ 0^+$	D	7295.7	1	7295.4 7	100	$0.0 \ 0^+$	D
6566.7	(1)	6566.5 10	100	$0.0 \ 0^+$	(D)	7309.0	(1)	7308.7 9	100	$0.0 \ 0^+$	(D)
6577.3	1	6577.1 10	100	$0.0 \ 0^+$	D	7327.3	1	7327.0 5	100	$0.0 \ 0^+$	D
6586.2	1	6586.0 <i>3</i>	100	$0.0 \ 0^+$	D	7336.49	1	7336.2 2	100	$0.0 \ 0^+$	D
6596.4	1	6596.2 <i>3</i>	100	$0.0 \ 0^+$	D	7353.0	(1)	7352.7 8	100	$0.0 \ 0^+$	(D)
6614.9	1	6614.7 8	100	$0.0 \ 0^+$	D	7376.2	(1)	7375.9 11	100	$0.0 \ 0^+$	(D)
6631.3	(1)	6631.1 12	100	$0.0 \ 0^+$	(D)	7387.4	1	7387.1 8	100	$0.0 \ 0^+$	D
6636.7	(1)	6636.5 18	100	$0.0 \ 0^+$	(D)	7396.1	1	7395.8 <i>3</i>	100	$0.0 \ 0^+$	D
6648.1	(1)	6647.98	100	$0.0 \ 0^+$	(D)	7428.3	1	7428.0 4	100	$0.0 \ 0^+$	D
6680.2	(1)	6680 2	100	$0.0 \ 0^+$	(D)	7447.0	1	7446.7 9	100	$0.0 \ 0^+$	D
6698.7	1	6698.5 7	100	$0.0 \ 0^+$	D	7461.3	1	7461.0 7	100	$0.0 \ 0^+$	D
6756.35	1	6756.1 2	100	$0.0 \ 0^+$	D	7473.7	1	7473.4 <i>3</i>	100	$0.0 \ 0^+$	D
6765.7	1	6765.4 7	100	$0.0 \ 0^+$	D	7498.0	(2)	7497.7 13	100	$0.0 \ 0^+$	(Q)
6815.9	(1)	6815.6 <i>13</i>	100	$0.0 \ 0^+$	(D)	7513.2	(2)	7512.9 5	100	$0.0 \ 0^+$	(Q)
6824.2	1	6823.9 6	100	$0.0 \ 0^+$	D	7543.3	(1)	7543 2	100	$0.0 \ 0^+$	(D)
6836.6	(1)	6836.3 6	100	$0.0 \ 0^+$	(D)	7551.7	(2)	7551.4 17	100	$0.0 \ 0^+$	(Q)
6847.4	1	6847.1 6	100	$0.0 \ 0^+$	D	7562.3	1	7562.0 7	100	$0.0 \ 0^+$	D
6853.7	2	6853.4 <i>4</i>	100	$0.0 \ 0^+$	Q	7583.1	1	7582.8 4	100	$0.0 \ 0^+$	D
6866.0	(2)	6865.7 <i>4</i>	100	$0.0 \ 0^+$	(Q)	7609.1	1	7608.8 <i>6</i>	100	$0.0 \ 0^+$	D
6888.6	1	6888.3 <i>5</i>	100	$0.0 \ 0^+$	D	7692.0	1	7691.7 6	100	$0.0 \ 0^+$	D
6900.3	(1)	6900.0 <i>3</i>	100	$0.0 \ 0^+$	(D)	7711.3	1	7711.0 6	100	$0.0 \ 0^+$	D
6950.8	1	6950.5 8	100	$0.0 0^+$	D	7737.3	(1)	7737 2	100	$0.0 0^+$	(D)
6959.3	(2)	6959.06	100	$0.0 0^+$	(Q)	7752.5	1	7752.2 8	100	$0.0 0^+$	D
6972.0	(1)	6971.7 8	100	$0.0 \ 0^+$	(D)	7764.5	1	7764.2 <i>4</i>	100	$0.0 \ 0^+$	D
6979.6	1	6979.3 8	100	$0.0 \ 0^+$	D	7781.1	1	7780.8 4	100	$0.0 0^+$	D
6995.1	1	6994.8 <i>5</i>	100	$0.0 \ 0^+$	D	7803.4	1	7803.1 5	100	$0.0 \ 0^+$	D
7008.77	1	7008.5 2	100	$0.0 \ 0^+$	D	7820.5	1	7820.2 9	100	$0.0 0^+$	D
7035.4	1	7035.1 <i>3</i>	100	$0.0 \ 0^+$	D	7834.9	(1)	7834.6 <i>13</i>	100	$0.0 0^+$	(D)
7050.8	1	7050.5 6	100	$0.0 \ 0^+$	D	7847.1	1	7846.8 <i>6</i>	100	$0.0 0^+$	D
7061.8	1	7061.5 4	100	$0.0 0^+$	D	7877.3	1	7877.0 6	100	$0.0 0^+$	D
7073.5	1	7073.2 6	100	$0.0 \ 0^+$	D	7889.9	1	7889.6 7	100	$0.0 0^+$	D
7087.3	1	7087.0 11	100	$0.0 0^+$	D	7900.8	(2)	7900.5 15	100	$0.0 0^+$	(Q)
7105.1	(1)	7104.8 13	100	$0.0 \ 0^+$	(D)	7927.3	1	7927 2	100	$0.0 0^+$	D
7117.2	1	7116.9 4	100	$0.0 \ 0^+$	D	7943.6	1	7943.3 8	100	$0.0 \ 0^+$	D

 $\gamma(^{98}Mo)$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.‡
7965.3	(1)	7965 2	100	$0.0 \ 0^+$	(D)
7986.3	(2)	7986 2	100	$0.0 \ 0^+$	(Q)
7996.1	1	7995.7 7	100	$0.0 \ 0^+$	D
8011.6	1	8011.2 7	100	$0.0 \ 0^+$	D
8023.6	1	8023.2 5	100	$0.0 \ 0^+$	D
8033.8	1	8033.4 9	100	$0.0 \ 0^+$	D
8045.2	(1)	8044.8 18	100	$0.0 \ 0^+$	(D)
8054.6	1	8054.2 8	100	$0.0 \ 0^+$	D
8068.0	(1)	8067.6 11	100	$0.0 \ 0^+$	(D)
8073	(2)	8073 4	100	$0.0 \ 0^+$	(Q)
8081.1	(1)	8080.7 6	100	$0.0 \ 0^+$	(D)
8096.26	(1)	8095.9 2	100	$0.0 \ 0^+$	(D)
8112.8	1	8112.4 8	100	$0.0 \ 0^+$	D
8124.5	1	8124.1 6	100	$0.0 \ 0^+$	D
8137.5	1	8137.1 10	100	$0.0 \ 0^+$	D
8158.4	1	8158.0 6	100	$0.0 \ 0^+$	D
8168.8	1	8168.4 <i>4</i>	100	$0.0 0^+$	D
8182.8	1	8182.4 4	100	$0.0 0^+$	D
8213.3	(2)	8212.9 10	100	$0.0 0^+$	(Q)
8244.6	1	8244.2 10	100	$0.0 0^+$	D
8255.5	(1)	8255.1 11	100	$0.0 \ 0^+$	(D)
8266.2	(1)	8265.8 19	100	$0.0 0^+$	(D)
8277.0	1	8276.6 4	100	$0.0 \ 0^+$	D
8289.5	1	8289.1 21	100	$0.0 \ 0^+$	D
8298.4	(1)	8298.0 <i>13</i>	100	$0.0 \ 0^+$	(D)
8310.1	1	8309.7 9	100	$0.0 \ 0^+$	D
8331.2	(1)	8330.8 9	100	$0.0 \ 0^+$	(D)
8357.5	(2)	8357.1 11	100	$0.0 \ 0^{+}$	(Q)
8370.5	1	8370.1.5	100	$0.0 0^{+}$	D
8393.4	1	8393 2	100	$0.0 \ 0^{+}$	D
8429.5	(2)	8429.1 9	100	$0.0 \ 0^{+}$	(Q)
8444.4	1	8444.0 7	100	$0.0 0^{+}$	D
8459.6	1	8459.27	100	$0.0 0^{+}$	D
84/2.1	1	84/1./ 4	100	$0.0 0^{+}$	D
8491.7	1	8491.3 9	100	$0.0 0^{+}$	D
8503.9	1	8503.5 5	100	$0.0 0^{+}$	D
8513.1	1	8512.7 11	100	$0.0 0^{+}$	D
8527.5	1	8526.9 10	100	$0.0 0^{+}$	D
833/.J	1	633/.1 /	100	$0.0 0^{+}$	D D
8302.8 8580-2		8302.4 9	100	$0.0 0^{+}$	U (D)
8580.2 8500 1	(2)	85/9.8 13	100	$0.0 0^{+}$	(Q)
8590.1	1	8589./9	100	$0.0 0^{+}$	D
8602.3	1	8601.9.6	100	$0.0 \ 0^+$	D

32

L

					A	dopted Le	vels, Gammas (continued)
						$\gamma(^{\varsigma}$	⁹⁸ Mo) (continued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$	Mult. [‡]	Comments
8613.1	1	8612.7 5	100	0.0	0^{+}	D	
8620.2	1	8619.8 7	100	0.0	0^{+}	D	
8627.8	1	8627.4 7	100	0.0	0^{+}	D	
8636.5	1	8636.1 5	100	0.0	0^{+}	D	
(8642.58)	$2^+, 3^+$	5431.5 <i>4</i>	2.4 2	3210.80	(4^{+})		
· · · · · ·	,	5446.4 <i>4</i>	2.3 2	3195.56	$(2^{-},3,4)$		
		5487.0 5	1.0 2	3155.56	(4 ⁺)		
		5533.4 8	3.1 5	3108.80	$(2^+, 3, 4)$		
		5538.8 6	1.9 2	3103.13	$(2^+, 3, 4)$		
		5592 1 <mark>b</mark> 7	052	3050.92	4+		
		5596.3 6	1.4.2	3045.89	4+		
		5665.0.7	1.0.3	2976.89	4+		
		5680.0 6	9.4.8	2962.45	3-	(E1)	Mult: from radiation strength in (n, γ) E=th.
		5874.72 22	11.9 13	2767.68	4 ⁺	(21)	
		5941.9 <i>4</i>	4.0 9	2700.68	2+		
		6021.9 7	0.8 1	2620.01	3+		
		6069.4 6	3.7 3	2572.84	3		
		6080.6 5	1.6 2	2562.23	(2^{-})		
		6156.7 7	0.4 1	2485.15	3+		
		6222.92 12	5.5 7	2419.63	4+		
		6308.4 5	0.5 1	2333.46	4+		
		6418.5 7	0.4 1	2223.862	4+		
		6435.93 8	3.4 <i>3</i>	2206.61	2+		
		6537.4 <i>4</i>	1.8 8	2104.72	3+		
		6624.80 2	100 6	2017.53	3-	(E1)	Mult.: from radiation strength (1971He10) in (n,γ) E=th.
		6760.7 7	0.5 1	1880.86	≤4		
		6883.48 16	1.6 3	1758.49	2+		
		7132.2 4	1.5 2	1510.047	4+		
		7210.7 4	1.0 <i>I</i>	1432.210	2+		
		7853.9 4	1.0 1	787.384	2+		
		7907.4 8	0.24 10	734.75	0^{+}		
8650.3	1	8649.9 6	100	0.0	0^{+}	D	
8662.7	1	8662.3 5	100	0.0	0^{+}	D	
8674.3	1	8673.9 10	100	0.0	0^{+}	D	

[†] From ⁹⁸Nb β^- decay (51.1 min) up to 4103 level and from (γ, γ') above that, unless otherwise noted.

[‡] From $\gamma\gamma(\theta)$ in $(\alpha, 2n\gamma)$ and RUL up to 3323 level and from $\gamma(\theta)$ in (γ, γ') above that, unless otherwise stated. For large dipole+quadrupole admixtures,

mult=M1+E2 is assigned in contrast to E1+M2, assuming that level half-lives are less than few ns if not given.

[#] Large ($\delta(Q/D)$) mixing ratio favors mult=M1+E2 rather than E1+M2, assuming level half-lives are no longer than few ns. [@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies,

 \mathfrak{S}

From ENSDF

 $\gamma(^{98}Mo)$ (continued)

assigned multipolarities, and mixing ratios, unless otherwise specified.

- ^a Multiply placed with undivided intensity.
 ^a Multiply placed with intensity suitably divided.
 ^b Placement of transition in the level scheme is uncertain.

⁹⁸₄₂Mo₅₆

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{98}_{42}{\rm Mo}_{56}$

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

 $--- \rightarrow \gamma$ Decay (Uncertain)

Legend Level Scheme (continued) Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided γ Decay (Uncertain) ----

 4^+

 4^{+}

6+

6+

 $\frac{5^{+}}{4^{+}}$

 6^+

 $\frac{\frac{4^{+}}{2^{+}}}{\frac{4^{+}}{2^{+}}}$

3+

3-

 2^{+}

4+

 2^{+}

 $\frac{2^+}{0^+}$

 0^+

0.0

stable

Adopted Levels, Gammas

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{98}_{42}{\rm Mo}_{56}$

⁹⁸₄₂Mo₅₆-49

From ENSDF

 $^{98}_{42}\mathrm{Mo}_{56}$ -49

 $^{98}_{42} Mo_{56}$