⁹⁸Mo(n,n'γ) **1984Me04**

	Hi		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen, Balraj Singh	NDS 164, 1 (2020)	15-Feb-2020

1984Me04: E=fast neutrons were produced from the 5-MW research reactor in Budapest. Target was 10 g 95.9% enriched ⁹⁸Mo. γ rays were detected with Ge(Li) detectors (FWHM=2.5 keV at 1332 keV). Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma(\theta)$ (90°–150°). Deduced levels, J, π , γ -ray multipolarities, mixing ratios. Comparisons with available data and theoretical calculations. 1984Me04 also report a large amount of data on ⁹⁸Mo from β^- decay of ⁹⁸Nb isomer.

Additional information 1.

Others:

1971McZG (also 1970SwZZ), 1965Ki07, 1962Do12.

All data are from 1984Me04, unless otherwise noted.

⁹⁸Mo Levels

A level reported at 1812 (1970SwZZ) is discarded since it is not confirmed in 1984Me04.

E(level) [‡]	J^{π}	E(level) [‡]	$J^{\pi \dagger}$	E(level) [‡]	$J^{\pi \dagger}$	E(level) [‡]	$J^{\pi \dagger}$
0.0	0^{+}	2206.83 6	2+	2572.67 13	3	3068.0 <i>3</i>	(3^{-})
734.83 4	0^{+}	2223.96 6	4+	2619.84 17	3+	3210.7 4	(4^+)
787.412 18	2+	2333.41 6	4+ @	2620.83 8	5-	3211.9 6	(4^{+})
1432.254 21	2+	2343.76 12	6+	2644.8? 4	$(1,2^+)$	3325.9? 3	4+
1510.05 3	4+	2418.38 9	2^{+}	2679.1? 10		3393.8? 4	(4^{+})
1758.58 <i>3</i>	2+	2419.16 7	4+	2701.03 20	2+	3419.8? 6	4+
1963.11 8	0^{+}	2485.23 11	3+	2767.7? 3	4+	3456.3? 2	(4^{+})
2017.57 4	3-	2506.46 13	5+	2795.66 21	4-	3738.4? 2	4+
2037.56 7	0^{+}	2526.2? 3	2+	2837.4? 4	6+		
2104.77 5	3+ #	2561.74 11	(2 ⁻)	2915.5 3	2^{+}		

[†] From Adopted Levels.

[‡] From least-squares fit to $E\gamma$ data.

[#] Spin from 672γ , $1317\gamma(\theta)$. $J^{\pi}=3^{-}$ would give unrealistic E1+M2 admixture (1984Me04).

[@] Spin from $1546\gamma(\theta)$ (1984Me04).

$\gamma(^{98}\text{Mo})$

E_{γ}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [†]	δ^{\dagger}	Comments
157.6 ^{‡a} 4	0.09 4	2837.4?	6+	2679.1?				
171.9 [‡] 7	0.14 8	2506.46	5+	2333.41	4+			
258.98 4	1.35 4	2017.57	3-	1758.58	2^{+}			
447.2 <i>3</i>	0.29 5	3068.0	(3-)	2620.83	5-			
^x 450.85 [‡] 10	0.61 6							
531.3 [‡] 3	0.44 6	1963.11	0^{+}	1432.254	2^{+}			
544.2 <i>4</i>	0.21 8	2561.74	(2^{-})	2017.57	3-			
555.4 <i>3</i>	0.45 [#] 8	2572.67	3	2017.57	3-			
574.4 <i>3</i>	0.45 [#] 8	2333.41	4+	1758.58	2^{+}			
603.1 4	0.40 8	2620.83	5^{-}	2017.57	3-			
644.81 2	10.9 6	1432.254	2+	787.412	2+	(M1+E2)	+1.70 16	A ₂ =+0.255 15; A ₄ =-0.005 20 δ : from $\gamma(\theta)$. δ =+0.13 4 is also possible but less likely from syst which suggest

Continued on next page (footnotes at end of table)

	98 Mo(n,n' γ) 1984Me04 (co				84Me04 (con	ontinued)			
γ ⁽⁹⁸ Mo) (continued)									
E_{γ}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult. [†]	δ^{\dagger}	Comments	
					<u></u>			dominant E2 component for transitions from second 2^+ to first 2^+ states. 1970SwZZ give δ =2.3.	
660.7 <i>4</i> 672.50 <i>4</i> 713.87 <i>5</i> 722.66 <i>2</i>	$\begin{array}{c} 0.20 \ 4 \\ 1.37 \ 6 \\ 1.07 \ 5 \\ 15.8 \ 2 \end{array}$	2419.16 2104.77 2223.96 1510.05		1758.58 1432.254 1510.05 787.412	2+ 2+ 4+ 2+	(M1+E2)	+5.8 9	A ₂ =+0.33 2; A ₄ =+0.15 3 A ₂ =+0.32 6; A ₄ =-0.06 7 A ₂ =+0.284 4; A ₄ =-0.064 5 δ (M3/E2)=-0.05 11 or unrealistic	
734.8 <i>1</i> 787.38 <i>2</i> 792.0 <i>2</i>	100 <i>1</i> 1.6 2	734.83 787.412 2223.96	$0^+ 2^+ 4^+$	0.0 0.0 1432.254	$0^+ \\ 0^+ \\ 2^+$	E0 Q		value of -14 4 from $\gamma(\theta)$. E _{γ} ,Mult.: from Adopted Gammas. A ₂ =+0.209 8; A ₄ =-0.021 11	
814.1 [‡] 2 823.35 7	0.26 2 0.75 <i>4</i>	2572.67 2333.41	3 4 ⁺	1758.58 1510.05	2+ 4+			A ₂ =+0.16 9; A ₄ =+0.11 11 δ : -2.7 +11-21 or -0.24 20 from $\gamma(\theta)$.	
833.70 <i>11</i> x860.8 <i>3</i> x889.8 <i>3</i>	1.37 [#] 7 0.16 [#] 4 0.11 3	2343.76	6+	1510.05	4+				
900.96 [@] 15	0.48 [@] 4	2333.41	4+	1432.254	2+			E_{γ} : placed from a separate level at 2333.1, 2 ⁺ in Adopted dataset, based on results in (α,2nγ).	
900.96 ^{@a} 15 906.1 ^a 3 909.54 8	0.48 [@] 4 0.18 3 0.62 4	3738.4? 3325.9? 2419.16	4+ 4+ 4+	2837.4? 2419.16 1510.05	6+ 4+ 4+				
971.14 <i>3</i> 975.2 <i>3</i> 985.8 <i>2</i> 987.6 <i>8</i> 993.6 ^{<i>a</i>} <i>9</i>	4.46 6 0.21 6 0.44 8 0.10 8 0.04	1758.58 2485.23 2418.38 2419.16 3325.9?	2 ⁺ 3 ⁺ 2 ⁺ 4 ⁺ 4 ⁺	787.412 1510.05 1432.254 1432.254 2333.41	2 ⁺ 4 ⁺ 2 ⁺ 2 ⁺ 4 ⁺	(M1+E2)	-1.6 +7-15	$A_2 = -0.23 \ 3; \ A_4 = -0.02 \ 4$	
996.44 <i>13</i> 1023.74 <i>3</i> <i>x</i> 1048.4 <i>4</i>	0.57 6 6.12 8 0.23 [#] 4	2506.46 1758.58	5+ 2+	1510.05 734.83	4^+ 0 ⁺	Q		A ₂ =+0.242 <i>13</i> ; A ₄ =-0.033 <i>17</i>	
1052.96 <i>13</i> 1093.9 ^{<i>a</i>} <i>3</i> 1110.78 <i>7</i> ×1167.8 <i>5</i>	0.73 5 0.70 <i>17</i> 0.81 5 0.20 <i>4</i>	2485.23 2526.2? 2620.83	2+ 5-	1432.254 1432.254 1510.05	2^+ 2^+ 4^+	D		A ₂ =-0.29 8; A ₄ =-0.04 10	
(1169) 1175.66 8 1187.6 3 1193.1 4	1.04 5 0.23 4 0.16 4	2679.1? 1963.11 2619.84 3210.7	0^+ 3^+ (4^+) $(1, 2^+)$	1510.05 787.412 1432.254 2017.57	4 ⁺ 2 ⁺ 2 ⁺ 3 ⁻ 2 ⁺			E_{γ} : from Adopted Gammas.	
1212.7 5 1230.17 4 1250.14 6 1285 6 2	5.3 <i>3</i> 1.22 <i>5</i> 0.74 6	2044.8? 2017.57 2037.56 2795.66	$(1,2^{-})$ 3^{-} 0^{+} 4^{-}	787.412 787.412 1510.05	2^{+} 2^{+} 2^{+} 4^{+}	D+Q	-0.04 1	A ₂ =-0.275 8; A ₄ =+0.008 12	
1317.43 <i>11</i> ^x 1389.6 <i>3</i> 1394.7 ^{<i>a</i>} <i>3</i>	1.54 6 0.14 3 0.16 4	2104.77 3738.4?	3 ⁺ 4 ⁺	787.412 2343.76	2 ⁺ 6 ⁺	(M1+E2)	+3.1 6	A ₂ =+0.46 <i>3</i> ; A ₄ =+0.10 <i>4</i>	
1419.41 5 1432.30 3 1437.0 3	2.45 5 9.25 11 0.25 4	2206.83 1432.254 2223.96	2^+ 2^+ 4^+	787.412 0.0 787.412	$2^+ 0^+ 2^+$	Q		A ₂ =+0.280 5; A ₄ =-0.020 6	
^x 1468.6 <i>3</i> 1546.06 8	0.20 <i>3</i> 1.74 <i>8</i>	2333.41	4+	787.412	2+			$A_2 = +0.318 \ II; A_4 = +0.032 \ I3$ Mult., δ : 1984Me04 deduced	

Continued on next page (footnotes at end of table)

				98 Mo(n,n' γ)		1984Me	04 (continued)
					γ(⁹⁸ Ν	Mo) (conti	nued)
E_{γ}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [†]	Comments
							δ (E2/M1)=+0.45 <i>16</i> , but inconsistent with adopted Δ J=2.
1631.03 ^{&} 10	0.50 ^{&} 5	2418.38	2+	787.412	2+		I_{γ} : total I_{γ} =0.87 5. Intensity division is based on Adopted Gammas.
1631.03 ^{&} 10 ^x 1690.4 3	0.37 ^{&} 5 0.25 4	2419.16	4+	787.412	2+		E_{γ} : poor fit. Level-energy difference=1632.2.
1697.8 2	0.70 5	2485.23	3+	787.412	2^{+}		
1701.8 6	0.18 5	3211.9	(4^{+})	1510.05	4+		
1759.1 2	0.41 5	1758.58	2+	0.0	0^{+}		
1774.31 11	1.21 6	2561.74	(2^{-})	787.412	2^{+}		
1785.1 2	0.28 4	2572.67	3	787.412	2^{+}		
^x 1824.5 4	0.16 3						
1832.4 2	0.47 4	2619.84	3+	787.412	2^{+}		
^x 1869.5 3	0.14 3						
1883.7 ^a 4	0.11 3	3393.8?	(4^{+})	1510.05	4+		
1909.6 ^{@a} 6	$0.15^{\textcircled{0}}4$	2644.8?	$(1,2^+)$	734.83	0^{+}		
1909.7 ^{@a} 6	$0.15^{\textcircled{0}}{4}$	3419.8?	4+	1510.05	4+		
1913.6 2	0.48.5	2701.03	2+	787.412	2+		
1945.7 ^{<i>a</i>} 3	0.46.5	3456.3?	(4^+)	1510.05	4+		
1980.3 ^{<i>a</i>} 3	0.09 3	2767.7?	4+	787.412	2^{+}		
2017.3 3	0.90 5	2017.57	3-	0.0	0^{+}	[E3]	
$2024 2^{@a} 2$	$0.31^{@}$ 4	3456 32	(4^+)	1432 254	2+	L - J	
x2082.2.3	0.24 5	5150.51	(1)	1152.254	-		
2128.1.3	0.27 4	2915.5	2+	787.412	2^{+}		
x2201.8.5	$0.17^{\#}$ 7		-		-		
2201.0 5	0.1/ /						

[†] From γ(θ) data in 1984Me04; large δ(Q/D) is assigned (M1+E2).
[‡] Probably a multiplet (1984Me04).
[#] Uncertain intensity due to presence of a strong background line (1984Me04).

[@] Multiply placed with undivided intensity.

[&] Multiply placed with intensity suitably divided. ^a Placement of transition in the level scheme is uncertain. ^x γ ray not placed in level scheme.

⁹⁸₄₂Mo₅₆-4

⁹⁸Mo(n,n'γ) 1984Me04

⁹⁸₄₂Mo₅₆

⁹⁸Mo(n,n'γ) 1984Me04

Level Scheme (continued)

 $^{98}_{42}{\rm Mo}_{56}$