168 Er(30 Si,X γ) **2007La03**

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Jun Chen, Balraj Singh	NDS 164, 1 (2020)	15-Feb-2020				

2007La03: $E(^{30}Si)=142$ MeV. Target was 1.15 mg/cm² ¹⁶⁸Er on a 9 mg/cm² Au backing. γ rays were detected with the EUROBALL-III array of 30 single HPGe detectors, 26 Clover and 15 Cluster Compton-shielded detectors. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma\gamma\gamma$ -coin. Deduced levels. Comparison with predictions of soft-octupole vibration model.

98Mo Levels

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
0.0 [#]	0^{+}	2678.1 7	(6^{+})	3656.3 ^{&} 7	(9 ⁻)	4993.2 ^a 11	(12,13)
787.3 [#] 4	2+	2737.9 ^a 8	(6,7)	3768.2 [@] 8	(9-)	5046.7 [#] 9	(12^{+})
1509.8 [#] 6	4+	2854.1 7	(8 ⁺)	4148.9 [#] 8	(10^{+})	5313.8 [@] 11	(13 ⁻)
2017.4 [@] 4	3-	3095.9 [@] 7	(7 ⁻)	4189.8 ^a 9	(10,11)	5314.9 ^{&} 10	(13 ⁻)
2343.4 [#] 6	(6+)	3271.2 [#] 7	(8+)	4423.4 ^{&} 9	(11 ⁻)	5924.7 [#] 11	(14^{+})
2620.4 [@] 6	(5 ⁻)	3527.1 ^a 8	(8,9)	4537.1 [@] 10	(11 ⁻)	6132.6 ^{&} 11	(15 ⁻)

[†] From least-squares fit to $E\gamma$ data.

[‡] As given by 2007La03, based on previous assignments, and associations with level sequences in the present work.

[#] Seq.(A): Yrast structure.

[@] Seq.(B): γ cascade based on 3⁻. Possible octupole structure.

[&] Seq.(C): γ cascade based on (9⁻).

^{*a*} Seq.(D): γ cascade based on (6,7).

Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Comments
334.5 5	5 2	2678.1	(6^{+})	2343.4	(6^{+})	
385.1 5	6.4 13	3656.3	(9-)	3271.2	(8+)	
394.2 5	94	2737.9	(6,7)	2343.4	(6 ⁺)	
416.8 5	2.8 4	3271.2	(8^+)	2854.1	(8+)	
431.5 5	6.9 11	3527.1	(8,9)	3095.9	(7-)	
475.3 5	16.4 20	3095.9	(7^{-})	2620.4	(5^{-})	
510.7 5	24 <i>3</i>	2854.1	(8^{+})	2343.4	(6^{+})	
560.2 5	9.3 11	3656.3	(9 ⁻)	3095.9	(7^{-})	
603.1 5	7.8 16	2620.4	(5 ⁻)	2017.4	3-	
662.7 5	8.3 10	4189.8	(10, 11)	3527.1	(8,9)	
672.3 5	9.7 <i>13</i>	3768.2	(9 ⁻)	3095.9	(7^{-})	
722.4 5	100	1509.8	4+	787.3	2+	
752.7 5	6.9 8	3095.9	(7^{-})	2343.4	(6^{+})	
767.1 5	10.0 9	4423.4	(11^{-})	3656.3	(9 ⁻)	
768.9 5	6.0 8	4537.1	(11^{-})	3768.2	(9 ⁻)	
776.7 5	3.7 4	5313.8	(13^{-})	4537.1	(11^{-})	
787.4 5		787.3	2+	0.0	0^{+}	I_{γ} : no intensity is available since this γ was used as a gating
						transition.
788.9 5	11.5 5	3527.1	(8,9)	2737.9	(6,7)	
802.6 5	2.8 5	3656.3	(9 ⁻)	2854.1	(8^{+})	
803.4 5	4.0 5	4993.2	(12, 13)	4189.8	(10, 11)	
817.7 5	5.5 5	6132.6	(15^{-})	5314.9	(13 ⁻)	
833.6 5	75 4	2343.4	(6 ⁺)	1509.8	4+	
877.6 5	12.0 15	4148.9	(10 ⁺)	3271.2	(8 ⁺)	

 $\gamma(^{98}Mo)$

¹⁶⁸Er(³⁰Si,Xγ) **2007La03** (continued)

					$\gamma(^{98}Mo)$ (continued)
E_{γ}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.
878.0 5		5924.7	(14^{+})	5046.7 (12 ⁺)	
891.4 5	4.6 5	5314.9	(13^{-})	4423.4 (11-)	
897.8 5	5.5 5	5046.7	(12^+)	4148.9 (10 ⁺)	
927.9 5	21.2 15	3271.2	(8^{+})	2343.4 (6 ⁺)	
1110.3 5	14.3 13	2620.4	(5-)	1509.8 4+	
1168.5 5	2.8 6	2678.1	(6^{+})	1509.8 4+	
1230.3 5	6.4 14	2017.4	3-	787.3 2+	
1294.9 5	2.8 4	4148.9	(10^{+})	2854.1 (8 ⁺)	
2017.3 5	3.7 9	2017.4	3-	$0.0 \ 0^+$	[E3]

 $^{98}_{42}{
m Mo}_{56}$

¹⁶⁸Er(³⁰Si,Xγ) 2007La03

⁹⁸₄₂Mo₅₆