¹⁰²Ru(d, ⁶Li) 1984Va14

History

Type Author Citation Literature Cutoff Date
Full Evaluation Jun Chen, Balraj Singh NDS 164, 1 (2020) 15-Feb-2020

1984Va14 (also 1983VaZH) E=45 MeV deuteron beam was produced from the KVI AVF cyclotron. Target was about 100-200 μ g/cm² enriched (>92%) Ru metal on a mylar backing. Reaction products were momentum-analyzed with the QMG/2 spectrograph (FWHM=80 keV) and detected with the focal-plane detector system. Measured $\sigma(\theta)$, 6° to 26°. Deduced levels, spectroscopic strengths, L-transfers from DWBA analysis. Absolute σ accurate to 15%. DWBA and IBA model calculations. See also 1983Va11 for data on first three states and coupled-channel calculations.

Additional information 1.

⁹⁸Mo Le<u>vels</u>

E(level)	L [†]	S_{α}^{\ddagger}	Comments
0	0	0.086	
740	0	0.030	
790	2 #	0.034	
1460 [@]	2(+4)	0.009	S_{α} : for L=2.
1770	2	0.011	
2020	3 [#]	0.030	
2210	2	0.006	
2330	6	0.020	
2620	0	0.015	
2740 [@]	(2+0)	0.007,0.006	

[†] From comparison with DWBA calculations, treating the transferred nucleon as a cluster with intrinsic spin=0 (1984Va14).

[‡] Spectroscopic strength $S_{\alpha} = (2L+1) \times (d\sigma/d\Omega)(\exp)/(d\sigma/d\Omega)(DWBA)$ (1984Va14).

[#] Experimental and theoretical $\sigma(\theta)$ do not agree well, probably due to two-step process as discussed by 1983Va11.

[@] Unresolved doublet (1984Va14).