Adopted Levels

History					
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	Jun Chen, Balraj Singh	NDS 164, 1 (2020)	15-Feb-2020		

 $S(n)=14780 SY; S(p)=730 SY; Q(\alpha)=-3910 SY 2017Wa10$

Estimated uncertainties (2017Wa10): 500 for S(n) and Q(α), 420 for S(p).

Q(\varepsilon p)=9640 320, S(2n)=32150 580, S(2p)=3960 310 (syst, 2017Wa10).

Measurements:

1995Ry03 (also 1995Le14): few events of ⁹⁸In were identified by analyzing fragments by tof method in Ni(¹¹²Sn,X) reaction at E=58 MeV/nucleon.

2001Ki13, 2002Fa13, 2002StZZ, 2007WeZX: ⁹⁸In produced and identified in ⁹Be(¹¹²Sn,X) at 1 GeV/nucleon followed by isotopic fragment separation.

2012Lo08, 2008Ba53: ⁹⁸In produced from fragmentation of a ¹¹²Sn beam at E=120 MeV/nucleon on a 195 mg/cm² ⁹Be target at the National Superconducting Cyclotron Laboratory (NSCL). Fragments separated by the A1900 Fragment Separator and the Radio Frequency Fragment Separator (RFFS). Ions were implanted in the double-sided silicon strip detector (DSSD). Detection system: NSCL Beta Counting System in conjunction with the SeGA Array of 16 HPGe detectors. Measured E γ , I γ , β spectra, E(p), I(p), $\beta\gamma$ -coin, β p-coin, $\gamma\beta$ p-coin, half-life, β -delayed proton emission probability. Production σ =3.8 pb *12* (2008Ba53) from 216±21 events assigned to ⁹⁸In. Total of 20 and 40 β p coin events identified for the ground state and isomer, respectively. Decay curves were fitted with Poisson distribution using log-likelihood function by consideration of decay of parent, daughter and grand-daughter.

2011StZV: ⁹⁸In produced in ⁹Be(¹²⁴Xe,X), E=1 GeV/nucleon at GSI. Measured half-life from implants- β -correlated decay curve. 2019Pa16: E(¹²⁴Xe)=345 MeV/nucleon beam incident on a 740 mg/cm² thick ⁹Be target at the RIKEN-RIBF facility. The

identification of the nuclide of interest was made through the BigRIPS separator and the ZeroDegree spectrometer by determining the atomic number and the mass-to-charge ratio of the ion using the tof-B ρ - Δ E method. The secondary beam was stopped in the double-sided silicon strip detector of the WAS3ABi spectrometer. The γ rays were detected by EURICA array comprising of 84 HPGe detectors. Measured E γ , $\beta\gamma$ -coin, β p-coin, β p γ -coin, half-lives by $\beta\gamma(t)$, β p(t). Deduced β^+ end-point energies, Q(ε) value, excitation energy of the (9⁺) isomer. Comparisons with previous experimental data and shell-model calculations.

Theory references: consult the NSR database (www.nndc.bnl.gov/nsr/) for 9 primary references, 8 dealing with nuclear structure calculations, and one with decay modes and half-life.

98In Levels

E(level)	J^{π}	T _{1/2}	Comments	
0	(0^+)	30 ms 1	$\%\varepsilon + \%\beta^+ = 100; \ \%\varepsilon p < 0.13 \ (2019Pa16)$	
			¹⁻¹ %εp: measured by 2019Pa16. Other: 5.5 +30–20 (2012Lo08, based on observation of 20 βp coincidence events. Uncertainty from e-mail reply of August 1, 2012 from G. Lorusso). 2019Pa16 suggest that large %εp reported in 2012Lo08 probably contributed by the (9 ⁺) isomeric activity.	
			J^{π} : β^+ decay proceeds mostly to the ground state of 98 Cd with T=1 through a superallowed β transition as log <i>ft</i> =3.57 8. Also $J^{\pi}=0^+$ and T=1 from shell-model predictions in 1997He24. See also shell-model calculations by 2012Co07 for energies of proton hole-neutron hole multiplet in 98 In.	
			T _{1/2} : weighted average of 30 ms <i>I</i> (2019Pa16, βγ-correlated decay curve); 47 ms <i>I</i> 3 (2012Lo08 and 2008Ba53, decay curves of time correlations between implantations and decay radiation); 32 ms 6 (2011StZV, implants-β-correlated decay curve); 32 ms +32–11 (2001Ki13,2002StZZ,2002Fa13,2007WeZX).	
0.82×10 ³ 73	(9+)	0.89 s 2	 %ε+%β⁺=100; %εp=44 2 (2019Pa16) %εp: measured by 2019Pa16. Other measurement: 19 2 (2012Lo08, from observation of 40 βp-coin events). E(level): from β⁺γ-coin data (2019Pa16). Other: <500 keV from systematics (2017Au03). T_{1/2}: weighted average of 0.89 s 2 (2019Pa16, weighted average of 0.99 s 7 from βγ-decay curve and 0.88 s 2 from βp-decay); 1.27 s 30 (2012Lo08, decay curves of time correlations 	

Continued on next page (footnotes at end of table)

Adopted Levels (continued)

⁹⁸In Levels (continued)

E(level) J^{π} T_{1/2}

Comments

- between implantations and decay radiation), 0.86 s 21 (2011StZV, implants- β -correlated decay curve), and 1.2 s +12-4 (2001Ki13,2002StZZ,2002Fa13). Other: 0.66 s 40 reported in 2008Ba53 (earlier publication of 2012Lo08).
- J^{π} : proposed by 2019Pa16 from β feeding to (8⁺) state in ⁹⁸Cd with log *ft* \approx 5.0, and strong population of (15/2⁺), (17/2⁺) and (21/2⁺) levels in ⁹⁷Ag from β^+ p decay through minimum angular momentum for the proton, which for 9⁺ assignment would be L=1.