Adopted Levels, Gammas

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Jun Chen, Balraj Singh	NDS 164, 1 (2020)	15-Feb-2020					

 $Q(\beta^{-}) = -1293 \times 10^{1} 40$; S(n) = 15250 SY; $S(p) = 410 \times 10^{1} 12$; $Q(\alpha) = -3960 50 = 2017Wa10, 2019Pa16$ Measured $Q(\beta^{-}) = -12930 400$ (2019Pa16, from β^{-} spectrum). 2017Wa10 give -13740 300 from systematic trend.

Estimated uncertainty for S(n)=300 (2017Wa10).

Q(\varepsilon p)=2880 50, S(2n)=28210 400 (syst), S(2p)=6030 50 (2017Wa10).

Other measurements:

1997Gr02: identification of an isomer in ⁹⁸Cd from separation of fragments from Ni(¹¹²Sn,X) at E=63 MeV/nucleon. A total of eight counts were assigned to a possible (8⁺), $0.2-\mu$ s isomer. Deduced T_{1/2} of the isomer. See also 1998GrZS for T_{1/2} of the

isomer populated by fragmentation of ¹⁰⁶Cd (ENAM conference Proc. p430, 1998, Bellaire, Michigan).

1978E109, 1992P101: ⁹⁸Cd produced by spallation reaction Sn(p,x) at E=600 MeV followed by mass-separation.

1969HaZU: 92 Mo(12 C,6n γ),E=70-95 MeV. A 1435 γ assigned tentatively to deexcite first 2⁺ level in 98 Cd.

Theory references: consult the NSR database (www.nndc.bnl.gov/nsr/) for 50 primary references, 45 dealing with nuclear structure calculations, and 5 with decay modes and half-lives.

Additional information 1.

98Cd Levels

Cross Reference (XREF) Flags

			1	A 98 In ε decay (30 ms) D 98 Be(124 Xe,X γ) B 98 In ε decay (0.89 s) E 46 Ti(58 Ni, $\alpha 2n\gamma$)
				Γ ⁹⁹ Sn ε p decay (24 ms) F ⁵⁸ Ni(⁴⁶ Ti, α 2n γ)
E(level) [†]	Jπ‡	T _{1/2}	XREF	Comments
0.0#	0+	9.3 s 1	AB DEF	$%ε+%β^+=100; %εp<0.029$ (2019Pa16) T=1 T _{1/2} : weighted average of 9.3 s <i>1</i> (2019Pa16, βγ(t)) and 9.2 s <i>3</i> (1992Pl01). Others: 8.1 s 5 (1988RyZY), ≈8 s (1978El09), 2002StZU. %εp from 2019Pa16. Other: <0.025 (1996He25,1997Ra22).
1395.1 [#] 2	(2^{+})		B DEF	
2082.8 [#] 3	(4 ⁺)		B DEF	
2281.1 [#] 3	(6 ⁺)	13 ns 2	B DEF	%IT=100
				T _{1/2} : from $(147\gamma)(198\gamma+688\gamma+1395\gamma)(t)$ in $(^{124}Xe,X\gamma)$ (2017Pa35). Other: <20 ns in $(^{58}Ni,\alpha 2n\gamma)$ (2004B110, centroid shift method).
2428.3# 4	(8 ⁺)	154 ns <i>16</i>	B DEF	%IT=100 $T_{1/2}$: from $\gamma\gamma(t)$ in (¹²⁴ Xe,X γ) (2017Pa35, note that 149 ns <i>14</i> is also quoted in authors' text). Others: 0.17 μ s +6-4 (2004B110) and 0.48 μ s <i>16</i> (1997Go18) in $\gamma\gamma(t)$ in (⁵⁸ Ni, α 2n γ); 0.20 μ s +30-17 (1997Gr02) and 0.19 μ s 2 (1998GrZS). Note that values from 1997Go18, 1997Gr02 and 1998GrZS could have contribution from the 224-ns isomer at 6635 also, first identified by 2004B110, since that isomer could have been also populated, but was not identified by 1997Go18, 1997Gr02 and 1998GrZS.
6585 2	(10 ⁺)		B D	XREF: B(?).
6635 2	(12+)	224 ns 5	DEF	 Core-excited state as intrepreted by 2017Pa35 in (¹²⁴Xe,Xγ). %IT=100 Core-excited state as intrepreted by 2017Pa35, 2010B113 and 2004B110 in (¹²⁴Xe,Xγ) and (⁵⁸Ni,α2nγ). J^π: tentatively assigned by 2004B110 in (⁵⁸Ni,α2nγ) based on shell-model predictions and observed isomeric decay. The same assignment is given in

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

98Cd Levels (continued)

E(level) [†]	Jπ‡	$T_{1/2}$	XREF	Comments		
				2017Pa35, 2010B113, 2006Ve09 and 2004B110.		
				$T_{1/2}$: from $\gamma\gamma(t)$ in (¹²⁴ Xe,X γ) (2017Pa35). Others: 0.21 μ s 2 (2019Ha26, $\gamma(t)$ at		
				RIBF-RIKEN); 0.23 μ s +4-3 (2004B110) in (⁵⁸ Ni, α 2n γ), 0.23 μ s 8 (2010B113) in		
				$(^{124}$ Xe,X $\gamma)$, 0.23 μ s +8-9 (2006Ve09) in (46 Ti, $\alpha 2n\gamma$).		

[†] From γ -ray energies.

[±] From 1997Go18 in (⁵⁸Ni, α 2n γ), based on systematics of neighboring N=50 isotones and shell-model predictions of $\pi g_{9/2}^{-2}$ structure, unless otherwise noted. # Seq.(A): Yrast cascade.

E _i (level)	\mathbf{J}_i^π	E_{γ}	I_{γ}	E_f .	J_f^{π} N	Ault.	α^{\dagger}	Comments
1395.1	(2 ⁺)	1395.1 2	100	0.0 0+	+			E _γ : weighted average of 1395.5 2 in ⁹⁸ In decay (0.89 s), 1394.8 2 in (⁵⁸ Ni, α 2nγ) and 1395.1 3 in (⁴⁶ Ti, α 2nγ).
2082.8	(4+)	687.7 2	100	1395.1 (2	2+)			E_{γ} : weighted average of 687.8 2 in ⁹⁸ In decay (0.89 s), 687.7 3 in (⁵⁸ Ni,α2nγ) and 687.7 2 in (⁴⁶ Ti α2nγ)
2281.1	(6 ⁺)	198.3 <i>I</i>	100	2082.8 (4	ŀ ⁺) []	E2]	0.1336	B(E2)(W.u.)=4.7 8 α (K)=0.1105 17; α (L)=0.0188 3; α (M)=0.00366 6 α (N)=0.000627 10; α (O)=2.28×10 ⁻⁵ 4 E _y : weighted average of 198.4 1 in ⁹⁸ In decay (0.89 s) and 198.1 2 in (⁵⁸ Ni, α 2ny). Other: 197.6 1 in (⁴⁶ Ti, α 2ny), seems low in energy
2428.3	(8+)	147.2 <i>I</i>	100	2281.1 (6	5 ⁺) (I	E2)	0.381	as compared to the other two values. B(E2)(W.u.)=1.43 <i>15</i> α (K)=0.306 <i>6</i> ; α (L)=0.0609 <i>11</i> ; α (M)=0.01198 <i>22</i> α (N)=0.00202 <i>4</i> ; α (O)=6.04×10 ⁻⁵ <i>10</i> E _γ : weighted average of 147.2 <i>1</i> in ⁹⁸ In decay (0.89 s) and 147.2 <i>2</i> in (⁵⁸ Ni, α 2nγ). Other: 146.5 <i>2</i> in (⁴⁶ Ti, α 2nγ), seems low in energy as compared to the other two values. Mult.: from α (K)exp in (⁵⁸ Ni, α 2nγ).
6585 6635	(10 ⁺) (12 ⁺)	4158 2 (49 2)	100 0.68 <i>18</i>	2428.3 (8 6585 (1	3 ⁺) 10 ⁺) []	E2] 1	19 4	E _γ : from (¹²⁴ Xe,Xγ). α (K)=9.8 <i>I</i> 2; α (L)=7.5 <i>I</i> 7; α (M)=1.5 <i>4</i> ; α (N)=0.25 <i>6</i> ; α (O)=0.00166 <i>I</i> 9 B(E2)(W.u.)=2.0 9 E _γ : from (¹²⁴ Xe,Xγ) only (2017Pa35, and priv. comm. Dec. 14, 2019 from L. Park)
		4207 1	100 2	2428.3 (8	8+) []	E4]	0.0001 6	B(E4)(W.u.)=3.03 <i>16</i> E _{γ} : from 2006Ve09 in (⁴⁶ Ti, α 2n γ). Other: 4207 2 in ⁹ Be(¹²⁴ Xe,X γ).

[†] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

γ (⁹⁸Cd)

Adopted Levels, Gammas

Level Scheme

 $--- \rightarrow \gamma$ Decay (Uncertain)

Legend

 $^{98}_{48}\text{Cd}_{50}$

Adopted Levels, Gammas

