9 Be(124 Xe,X γ) 2010Bl13,2017Pa35,2019Ha26

Type Author Citation Literature Cutoff Date

Full Evaluation Jun Chen, Balraj Singh NDS 164, 1 (2020) 15-Feb-2020

- 2017Pa35: $E(^{124}Xe)=345$ MeV/nucleon beam incident on a 740 mg/cm² thick 9Be target at the RIKEN-RIBF facility. The identification of the nuclide of interest was made through the BigRIPS separator and the ZeroDegree spectrometer by determining the atomic number and the mass-to-charge ratio of the ion using the tof- $B\rho$ - ΔE method. The secondary beam was stopped in the double-sided silicon strip detector of the WAS3ABi spectrometer. The γ rays were detected by EURICA array comprising of 84 HPGe detectors. Measured $E\gamma$, $I\gamma$, $\gamma\gamma$ (t). Deduced half-lives, isomeric ratios, transition strengths. Comparisons with available data and shell-model calculations.
- 2019Ha26: same experimental arrangement at RIBF-RIKEN as in 2017Pa35. Measured half-life of the (4^+) isomer at 107 keV by $\gamma(t)$, and isomeric ratio. Deduced B(E2) for 107-keV transition.

⁹⁸Cd Levels

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$	Comments				
0#	0+						
1395 [#]	(2^{+})						
2083 [#]	(4^{+})						
2281 [#]	(6^{+})	13 ns 2	$T_{1/2}$: from $(147\gamma)(198\gamma+688\gamma+1395\gamma)(t)$ (2017Pa35).				
2428 [#]	(8^{+})	154 ns 16	$T_{1/2}$: value is from Table I in 2017Pa35, but $T_{1/2}$ =149 ns 14 is also quoted in text.				
			Measured isomeric ratio R=58% 7 (2019Ha26), 97% 36 (2017Pa35).				
6585	(10^{+})		Core-excited state as intrepreted by 2017Pa35.				
6635	(12^{+})	224 ns 5	Core-excited state as intrepreted by 2017Pa35 and earlier authors.				
			$T_{1/2}$: from $\gamma\gamma(t)$ in 2017Pa35, but the gating γ -ray transitions were not given by the authors.				
			Others: 0.21 μ s 2 (2019Ha26, γ (t)); 0.23 μ s 8 from a single exponential fit to 4157 γ (t)				
			(2010B113).				
			Measured isomeric ratio R=18% 4 (2019Ha26), 10% I (2017Pa35).				

[†] From 2010Bl13 based on Eγ data.

$$\gamma$$
(98Cd)

Continued on next page (footnotes at end of table)

uncertainty. Inclusion of the systematic uncertainty gives E_{γ} =49 2 keV (priv. comm.

[‡] From the Adopted Levels.

^{*} Seq.(A): Yrast cascade.

9 Be(124 Xe,X γ) 2010Bl13,2017Pa35,2019Ha26 (continued)

γ (98Cd) (continued)

E_{γ}^{\dagger}	I_{γ}	$E_i(level)$	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	α#	$I_{(\gamma+ce)}^{\ddagger}$	Comments
147 198 688 1395		2428 2281 2083 1395	(8 ⁺) (6 ⁺) (4 ⁺) (2 ⁺)	2281 (6 ⁺) 2083 (4 ⁺) 1395 (2 ⁺) 0 0 ⁺				Dec 14, 2019 from J. Park, first author of 2017Pa35). $I_{(\gamma+ce)}$: from the observed ratio $I_{\gamma}(4158\gamma)/I_{\gamma}(4207\gamma)$, and equating the intensity of the 4158 γ with the transition intensity of the 49-keV γ ray (priv. comm. Dec 14, 2019 from J. Park, first author of 2017Pa35). I_{γ} : deduced from $I(\gamma+ce)$ and α .
4158 2		6585	(10^+)	2428 (8 ⁺)				E_{γ} : 4157.9 2 with statistical uncertainty, and 4158 2 with systematic uncertainty considered (priv. comm. Dec 14, 2019 from J. Park, first author of 2017Pa35). Other: 4157 3 (2010B113).
4207 2	88 2	6635	(12+)	2428 (8+)	[E4]	0.00016	88 2	B(E4)(W.u.)=3.03 8 (2017Pa35) E _γ : 4207.0 <i>I</i> with statistical uncertainty, and 4207 2 with systematic uncertainty considered (priv. comm. Dec 14, 2019 from J. Park, first author of 2017Pa35).

 $^{^{\}dagger}$ From 2010B113. $^{\frac{1}{2}}$ From 2017Pa35. $^{\sharp}$ Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

9 Be(124 Xe,X γ) 2010Bl13,2017Pa35,2019Ha26

Seq.(A): Yrast cascade

