⁹⁹Sn εp decay (24 ms) 2018Pa20

History			
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen, Balraj Singh	NDS 164, 1 (2020)	15-Feb-2020

Parent: ⁹⁹Sn: E=0; T_{1/2}=24 ms 4; Q(*ε*p)=4400 SY; %*ε*p decay=3.9 26

⁹⁹Sn-T_{1/2}: Measured by 2018Pa20, using maximum likelihood method (MLH) for (implant)(positron)-correlated decay curve, where the fit function contained the parent, β -daughter, and β p-daughter decay components with half-lives and $\%\beta$ p branching ratios, and a constant background for random correlations.

⁹⁹Sn-Q(*ε*p): 4400 300 (syst,2017Wa10).

⁹⁹Sn-% ε p decay: Measured % β^+ p=3.9 +34–17 for ⁹⁹Sn decay (2018Pa20).

2018Pa20: ⁹⁹Sn nuclide produced at RIBF-RIKEN facility in ⁹Be(¹²⁴Xe,X) reaction at E=345 MeV/nucleon with target thickness of 740 mg/cm². Identification of ⁹⁹Sn was made by determining atomic Z and mass-to-charge ratio A/Q, where Q=charge state of the ions. The selectivity of ions was based first on magnetic rigidity (B ρ), and energy loss (Δ E) using BigRIPS separator and, in the second stage by B ρ -tof- Δ E measurement in the later stages of BigRIPS separator and ZeroDegree spectrometer (ZDS) using position-sensitive parallel-plate avalanche counters, plastic scintillators, and a gas-filled ionization chamber. The flight time through the separation and identification systems ranged from 600 to 630 ns depending on A and Z. The separated nuclei were implanted in a wide range segmented silicon-strip stopper array for ion and β particle detection system WAS3ABi, consisting of three highly-segmented 1 mm thick double-sided silicon strip detectors (DSSSDs). Q(β) value was measured using ten single-sided segmented strip detectors (SSSSDs) placed farther downstream. Measured (implant) β correlated decay curve, with a time correlation window of 5 seconds before and after ion implantation. The EURICA array was used for gamma-ray detection in coincidence with β particles and implants. No beta-delayed γ rays were observed in the decay of ⁹⁹Sn. Events for proton emission were separated from the positron events by requiring a minimum of 1500 keV energy deposited in a single pixel of a DSSSD.

Details of the decay scheme are not available.