Adopted Levels

History			
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen, Balraj Singh	NDS 164, 1 (2020)	15-Feb-2020

 $Q(\beta^{-})=16060 SY; S(n)=2270 SY; S(p)=16180 CA; Q(\alpha)=-11800 CA$ 2017Wa10,2019Mo01

 $Q(\beta^{-})$ and S(n) from 2017Wa10. S(p) and $Q(\alpha)$ from 2019Mo01 (theory).

- $Q(\beta^{-}n)=11100\ 420$, $S(2n)=6230\ 500\ (syst,2017Wa10)$. $S(2p)=35530\ (2019Mo01,theory)$. Evaluators deduce $Q(\beta^{-}2n)=8690\ 400$, $Q(\beta^{-}3n)=3690\ 400\ from\ mass\ values\ in\ 2017Wa10$.
- 2010Oh02: ⁹⁸Br nuclide identified in ⁹Be(²³⁸U,F) and Pb(²³⁸U,F) reactions with a ²³⁸U⁸⁶⁺ beam energy of 345 MeV/nucleon produced by the cascade operation of the RBIF accelerator complex of the linear accelerator RILAC and four cyclotrons RRC, fRC, IRC and SRC. Identification of ⁹⁸Br nuclei was made on the basis of magnetic rigidity, time-of-flight and energy loss of the fragments using BigRIPS fragment separator. Experiments performed at RIKEN facility. Based on A/Q spectrum and Z versus A/Q plot, five counts in one setting and 6 counts in another were assigned to ⁹⁸Br isotope. See also 2010KuZV for production cross section values. (Q=charge state).

Theory references: consult the NSR database (www.nndc.bnl.gov/nsr/) for only one primary reference dealing with delayed-neutron emission probabilities.

Additional information 1.

⁹⁸Br Levels

E(level)Comments0 $\%\beta^-=100; \ \%\beta^-n=?; \ \%\beta^-2n=?; \ \%\beta^-3n=?$
Only the β^- decay mode is expected, accompanied by delayed neutron decays.
Theoretical $T_{1/2}=26.0 \text{ ms}, \ \%\beta^-n=74, \ \%\beta^-2n=17, \ \%\beta^-3n=0.0 (2019Mo01).$
Theoretical $T_{1/2}=17 \text{ ms}, \ \%\beta^-n=64.6, \ \%\beta^-2n=1.5, \ \%\beta^-3n=0.1 (2016Ma12).$
Theoretical $\%\beta^-n=48.3, \ \%\beta^-2n=25.0 (2014Mi23).$
T $_{1/2}$: half-life of the 98 Br activity has not been measured. It is expected to be greater than the time-of-flight of 634 ns

 $\Gamma_{1/2}$: half-life of the ⁹⁰Br activity has not been measured. It is expected to be greater than the time-of-flight of 634 ns (value from priv. comm. with T. Kubo, July 14, 2010) through the beam transport system. From systematics of half-lives of neighboring Br isotopes, the half-life is expected to be <70 ms (70 ms for ⁹⁴Br, 102 ms for ⁹³Br and 314 ms for ⁹²Br), assuming a decreasing trend of half-life as neutron number increases in neutron-rich nuclei. 2017Au03 give 5 ms from some other systematics.

Measured σ =10 pb (2010Oh02), systematic uncertainty \approx 50%.

Probability of misidentification of ⁹⁸Br isotope<0.001% and <0.094% in two different settings (2010Oh02).

Estimated uncertainties (2017Wa10): 500 for $Q(\beta^{-})$, 570 for S(n).