50Cr(58Ni,pn2 $\alpha\gamma$) 1995Sc50,1998Ce03

Type Author Citation Literature Cutoff Date
Full Evaluation Jun Chen, Balraj Singh NDS 164, 1 (2020) 15-Feb-2020

1995Sc50: E=250 MeV ⁵⁸Ni beam was produced from the tandem cyclotron accelerator combination of VICKSI at the Hahn-Meitner-Institut. Target was 97.7% enriched ⁵⁰Cr of 2 mg/cm² thick rolled onto a 25 mg/cm² Au backing. Charged particles were detected with an array of 4 silicon surface-barrier detectors, neutrons were detected with a neutron multiplicity filter consisting of 7 segments of the HMI 2π detector filled with liquid scintillator, and γ rays were detected with the OSIRIS array of 12 HPGe detectors with BGO shields. Measured Εγ, Ιγ, γγ-coin, ηγγ-coin, (particle)γγ-coin. Deduced levels, J, π. Comparisons with shell-model calculations.

1998Ce03: E=261 MeV ⁵⁸Ni beam was produced from accelerator facility at Niels Bohr Institute. Target was ⁵⁰Cr. Charged particles were detected with a set of silicon detector, neutrons were detected with a neutron multiplicity filter, and γ rays were detected with the NORDBALL Ge-detector array. Measured E γ , I γ , γ (DCO), $\gamma\gamma$ -coin, n $\gamma\gamma$ -coin, (particle) $\gamma\gamma$ -coin. Deduced levels, J, π . Comparisons with shell-model calculations.

Others: 2001Li12, 1997Ra22, 1996He25.

98 Ag Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
0.0	(6 ⁺)	
220.0 <i>3</i>	(7^{+})	
1115.4 6	(8^{+})	
1404.7 5	(9^+)	
1863.1 <i>6</i>	(10^+)	
2152.5 6	(11^{+})	
2562.5 7	(12^+)	
2715.7 7	(13^{+})	Possible maximum aligned state of configuration= $\pi g_{9/2}^{-3} \otimes \nu d_{5/2}$ (1998Ce03).
3716.7 11	(13^{+})	5 592 17 1
4090.7 11	(14^{+})	
4475.7 <i>15</i>	(15)	

[†] From a least-squares fit to γ -ray energies, assuming $\Delta E \gamma = 1$ keV if not given for fitting purpose only.

γ (98Ag)

DCO(D) ratios are from erratum to 1998Ce03, gated on stretched dipoles. Typical value is around 0.8 for stretched dipoles ($\Delta J=1$) and around 1.6 for stretched quadrupoles ($\Delta J=2$) and non-stretched dipoles (1998Ce03).

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$E_i(level)$	\mathbf{J}_i^{π}	E_f J_f^{π}	Mult.	Comments
153.2 <i>3</i>	76 <i>5</i>	2715.7	(13^+)	2562.5 (12 ⁺)	D	DCO(D)=0.9 I
220.0 3	88 6	220.0	(7+)	0.0 (6+)	D	I_{γ} : other: 51 <i>I3</i> (1995Sc50). DCO(D)=1.0 <i>I</i> I_{γ} : other: 90 22 (1995Sc50).
289.4 ^{&} 3	19 ^{&} 6	1404.7	(9+)	1115.4 (8+)	(D)	DCO(D)=0.7 I DCO is for 289.4 doublet. Placements and intensity division from 1998Ce03. I_{γ} : other: 100 30 for doublet (1995Sc50). Additional information 1.
289.4 ^{&} 3 374 [#]	56 ^{&} 5	2152.5 4090.7	(11^+) (14^+)	1863.1 (10 ⁺) 3716.7 (13 ⁺)	(D) D	DCO(D)=0.8 2

[‡] From 1998Ce03, proposed based on γ -ray multipolarities and shell-model predictions.

50 Cr(58 Ni,pn2 $\alpha\gamma$) 1995Sc50,1998Ce03 (continued)

γ (98Ag) (continued)

$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	$E_i(level)$	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.@	Comments
385 [#]	37 3	4475.7	(15)	4090.7 (14+)	D	DCO(D)=0.6 2
410.0 <i>3</i>	95 6	2562.5	(12^{+})	2152.5 (11 ⁺)	D	DCO(D)=0.6 1
						I_{γ} : other: 55 16 (1995Sc50).
458.4 <i>3</i>	46 <i>4</i>	1863.1	(10^+)	$1404.7 (9^+)$	D	DCO(D)=1.1 2
						I_{γ} : other: 53 15 (1995Sc50).
747.7 <i>4</i>	54 <i>5</i>	2152.5	(11^{+})	$1404.7 (9^+)$	Q	DCO(D)=1.9 3
						I_{γ} : other: 35 12 (1995Sc50).
896 <mark>#</mark>	26 3	1115.4	(8^{+})	220.0 (7+)	D	DCO(D)=0.8 2
1001 [#]	40 4	3716.7	(13^{+})	2715.7 (13 ⁺)	D	DCO(D)=1.0 4
1184.6 <i>4</i>	100	1404.7	(9^+)	$220.0 (7^{+})$	Q	DCO(D)=1.6 2
						I_{γ} : other: 102 29 (1995Sc50).
1375 [#]	16.8 25	4090.7	(14^{+})	2715.7 (13+)		,

 $^{^{\}dagger}$ From 1995Sc50, unless otherwise stated.

 $^{^{\}frac{1}{7}}$ From 1998Ce03, normalized to I γ (1184.6 γ)=100. Quoted values are the original values of 1998Ce03 divided by 10. Note that values from 1995Sc50 given under comments are normalized to $I\gamma(289.4\gamma)=100~30$. # Reported by 1998Ce03 only.

[@] From measured $\gamma(DCO)$ in 1998Ce03.

[&]amp; Multiply placed with intensity suitably divided.

⁵⁰Cr(⁵⁸Ni,pn2αγ) 1995Sc50,1998Ce03

