97 Y β^- decay (3.75 s) 1976MoZC

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 111, 525 (2010)	19-Nov-2009

Parent: ⁹⁷Y: E=0.0; $J^{\pi}=(1/2^{-})$; $T_{1/2}=3.75$ s 3; $Q(\beta^{-})=6689$ 11; % β^{-} decay=100.0 ⁹⁷Y-ADOPTED values for ⁹⁷Y.

1976MoZC: measured E γ , I γ , ce, prompt and delayed $\gamma\gamma$ and $\beta\gamma$ coincidences. Ge(Li), FWHM 2.0 keV at 1332 keV, surface barrier detector for the fissions.

Others: 1996Lh03,1996Lh05,1976SaYV ($\gamma\gamma$, $E\gamma$, $I\gamma$), 1990Bu01 ($\beta\gamma\gamma$, $T_{1/2}$ (levels)), 1984BIZN,1978St02 ($E\beta$), 1979Bo26 ($E\gamma$, curved-crystal spectrometer).

⁹⁷Zr Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	$1/2^{+}$	16.749 h 8	$\%\beta^{-}=100$
			$T_{1/2}, \%\beta^-$: from Adopted Levels.
1103.09 13	$3/2^{+}$		
1264.42 19	$7/2^{+}$	102.8 ns 24	$T_{1/2}$: from Adopted Levels.
1399.98 <i>13</i>	$(3/2^+, 5/2^+)$		
1806.9 11	$(7/2^{-})$		
1859.08 20	$(3/2^+, 5/2^+)$	<8.9 [#] ps	
1996.53 24	$(5/2^+)$	<2 [#] ps	
2057.3 4	$(5/2^+)$	1	
2742.97 24	(1/2, 3/2)		
3287.65 20	$(3/2^{-})$		
3401.4 4	$(3/2^{-})$	<6.2 [#] ps	
3549.6 4	(1/2, 3/2)	-	

 † From a least squares fit to Ey.

[‡] From Adopted Levels.

[#] From 1990Bu01 (fig.2), by centroid shift method. $T_{1/2}$ (3288-keV level) set equal to 0 in calculating the centroid shift correction.

β^{-} radiations

E(decay)	E(level)	$I\beta^{-\ddagger\ddagger}$	Log ft	Comments
(3139 11)	3549.6	3.1 4	5.35 6	av E β =1330.8 53
				E(decay): $E\beta^{-3300}$ 180 in coin with 3401 γ (1978St02).
(3288 11)	3401.4	15.0 17	4.76 5	av $E\beta = 1401.2 53$
(3401 11)	3287.65	27 3	4.56 5	av E β =1455.3 53
				E(decay): $E\beta^{-}=3315 \ 115$ in coin with 1291γ , 1997γ , 3288γ (1978St02).
(3946 11)	2742.97	6.4 10	5.47 7	av E β =1715.2 53
(4632 11)	2057.3			$I\beta^-$: GTOL upper limit (method 1): 0.7.
(4692 11)	1996.53	1.9 7	6.33 16	av $E\beta = 2073.153$
(4830 11)	1859.08	0.7 6	6.8 4	av $E\beta = 2139.153$
				$I\beta^-$: GTOL upper limit (method 1): 1.5.
(5289 11)	1399.98	3.9 7	6.25 8	av $E\beta = 2359.853$
(5425 11)	1264.42			$I\beta^-$: GTOL upper limit (method 1): 0.6.
(5586 11)	1103.09	1.4 7	6.80 22	av $E\beta = 2502.653$
(6689 11)	0.0	40 10	5.70 11	av $E\beta = 3033.653$
				E(decay): 6702 25 (1984BIZN); 6650 120, feeds mainly g.s. (1978St02).
				$I\beta^-$: from 1976MoZC.
				log ft slightly lower that the expected \geq 5.9.

1

⁹⁷Y β⁻ decay (3.75 s) 1976MoZC (continued)

β^- radiations (continued)

[†] Deduced from I γ intensity balance with I $\beta^{-}(g.s.)=40\%$ 10.

[‡] Absolute intensity per 100 decays.

$\gamma(^{97}\mathrm{Zr})$

I γ normalization: from Σ I γ to g.s.=60 10. I β ⁻ to g.s.=40% 10 deduced by 1976MoZC from a filiation measurement. All data are from 1976MoZC, unless otherwise noted. The level scheme is deduced from coincidence data (from mass separated fission products). The level scheme is confirmed by 1996Lh03.

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult.‡	α &	Comments
161.4 <i>2</i> 189.6	2 1	1264.42 1996.53	7/2 ⁺ (5/2 ⁺)	1103.09	3/2+	[E2] D	0.195	$\begin{array}{c} \alpha(\mathrm{K}){=}0.1661\ 25;\ \alpha(\mathrm{L}){=}0.0237\\ 4;\ \alpha(\mathrm{M}){=}0.00413\ 7;\\ \alpha(\mathrm{N}{+}){=}0.000586\ 9\\ \alpha(\mathrm{N}){=}0.000558\ 9;\\ \alpha(\mathrm{O}){=}2.85{\times}10^{-5}\ 5\\ \gamma\ \text{observed by }1996\mathrm{Lh03}\ \text{only}\\ (\mathrm{In\ coin\ with\ }1291\gamma);\\ \mathrm{I}(189.6\gamma)\ \mathrm{from\ }4\ \%\ 2 \end{array}$
296.88 [#] 3 544.8 5 594.7 2	7 2 5 2 2 1	1399.98 3287.65 1859.08	$(3/2^+, 5/2^+)$ $(3/2^-)$ $(3/2^+, 5/2^+)$ $(2/2^+, 5/2^+)$	1103.09 2742.97 1264.42	3/2 ⁺ (1/2,3/2) 7/2 ⁺	D,E2		depopulation branching of 1997 level.
1103.0 2	28 2	1103.09	(3/2, 3/2) $3/2^+$	0.0	$\frac{3}{2}$ $\frac{1}{2^+}$	D,E2		
1264.2 5	<1	1264.42	7/2+	0.0	1/2+	[M3]	1.72×10 ⁻³	$\begin{aligned} &\alpha(\mathbf{K}) = 0.001509 \ 22; \\ &\alpha(\mathbf{L}) = 0.0001724 \ 25; \\ &\alpha(\mathbf{M}) = 3.00 \times 10^{-5} \ 5; \\ &\alpha(\mathbf{N}+) = 5.54 \times 10^{-6} \ 8 \\ &\alpha(\mathbf{N}) = 4.26 \times 10^{-6} \ 6; \\ &\alpha(\mathbf{O}) = 3.00 \times 10^{-7} \ 5; \\ &\alpha(\mathbf{IPF}) = 9.78 \times 10^{-7} \ 16 \end{aligned}$
1291.2 3	32 3	3287.65	$(3/2^{-})$	1996.53	$(5/2^+)$			
1344.0 5	5 2	3401.4	(3/2 ⁻)	2057.3	(5/2+)	(E1)	3.04×10 ⁻⁴	$\alpha(K)=0.0001490\ 21;\alpha(L)=1.611\times10^{-5}\ 23;\alpha(M)=2.79\times10^{-6}\ 4;\alpha(N+)=0.0001358\ 20\alpha(N)=3.96\times10^{-7}\ 6;\alpha(O)=2.83\times10^{-8}\ 4;\alpha(IPF)=0.0001353\ 20$
1400.0 2 1428.9 5 1639.8 3 1887.4 3	25 2 4 2 4.6 8 10.3 9	1399.98 3287.65 2742.97 3287.65	$(3/2^+, 5/2^+)$ $(3/2^-)$ (1/2, 3/2) $(3/2^-)$	0.0 1859.08 1103.09 1399.98	$ \frac{1/2^{+}}{(3/2^{+},5/2^{+})} \\ \frac{3/2^{+}}{(3/2^{+},5/2^{+})} $			
1996.6 <i>3</i>	41 2	1996.53	(5/2+)	0.0	1/2+	(E2)	4.68×10 ⁻⁴	$\alpha(K)=0.0001442\ 21;\alpha(L)=1.565\times10^{-5}\ 22;\alpha(M)=2.71\times10^{-6}\ 4;\alpha(N+)=0.000306\ 5\alpha(N)=3.86\times10^{-7}\ 6;\alpha(O)=2.76\times10^{-8}\ 4;\alpha(IPF)=0.000305\ 5$
2057.3 <i>5</i> 2743.1 <i>4</i>	5.2 9 36 <i>3</i>	2057.3 2742.97	(5/2 ⁺) (1/2,3/2)	$\begin{array}{c} 0.0\\ 0.0\end{array}$	1/2 ⁺ 1/2 ⁺			

Continued on next page (footnotes at end of table)

				$^{97}{ m Y}eta^-$ decay	y (3.75 s)	1976MoZC	C (continued)	
$\gamma(^{97}$ Zr) (continued)								
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger @}$	E _i (level)	J_i^π	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [‡]	α &	Comments	
3287.6 4	100 3	3287.65	(3/2 ⁻)	0.0 1/2+	[E1]	1.41×10 ⁻³	$\begin{aligned} &\alpha(\text{K}) = 3.86 \times 10^{-5} \ 6; \ \alpha(\text{L}) = 4.13 \times 10^{-6} \ 6; \\ &\alpha(\text{M}) = 7.14 \times 10^{-7} \ 10; \ \alpha(\text{N}+) = 0.001364 \ 20 \\ &\alpha(\text{N}) = 1.017 \times 10^{-7} \ 15; \ \alpha(\text{O}) = 7.32 \times 10^{-9} \ 11; \\ &\alpha(\text{IPF}) = 0.001364 \ 20 \end{aligned}$	
3401.3 4	78 4	3401.4	(3/2 ⁻)	0.0 1/2+	[E1]	1.46×10 ⁻³	$\alpha(K) = 3.69 \times 10^{-5} 6; \ \alpha(L) = 3.94 \times 10^{-6} 6; \alpha(M) = 6.82 \times 10^{-7} 10; \ \alpha(N+) = 0.001421 \ 20 \alpha(N) = 9.72 \times 10^{-8} 14; \ \alpha(O) = 6.99 \times 10^{-9} 10; \alpha(IPF) = 0.001421 \ 20$	
3549.5 4	17.2 10	3549.6	(1/2,3/2)	0.0 1/2+			······································	

[†] ΔE and $\Delta I \gamma$ are from 1976SaYV where available, otherwise estimated by evaluator based on uncertainties given by 1976SaYV for similar energies and intensities (one exception, 189.6γ , is documented In comments).

[‡] From Adopted Gammas.

From 1979Bo26.
@ For absolute intensity per 100 decays, multiply by 0.181 18.

& Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

97 Y β^- decay (3.75 s) 1976MoZC

