⁹⁷ Y $β^-$ decay (142 ms) 2009Ma40,1996Lh03

		History	
Type Author		Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 111, 525 (2010)	19-Nov-2009

Parent: ⁹⁷Y: E=3522.6 4; $J^{\pi}=(27/2^{-})$; $T_{1/2}=142$ ms 8; $Q(\beta^{-})=6689$ 11; $\%\beta^{-}$ decay=5.2 9 ⁹⁷Y-From adopted values for ⁹⁷Y.

⁹⁷Y-%β⁻ decay: From 2009Ma40 from off-beam γγγ data (sum of 2.9 % 6 feeding of 5570 level, and 2.3 % 7 feeding of 5606 level). 1996Lh05 find 1.6 % 7 from comparison of coin intensity of 699γ, 818γ, and 840γ (this decay) with the intensities of 792γ, 911γ, 321γ, 668γ, and 990γ In ⁹⁷Y IT decay (142 ms). While undisclosed, a similar comparison was presumably used by 2009Ma40 As well.

2009Ma40 (superseding 2009Ma26): ²³⁸U(⁴⁸Ca,F γ) E=330 MeV; measured E γ , I γ , $\gamma\gamma$ with GAMMASPHERE array composed of 101 Compton-suppressed Ge detectors performed at Argonne National Laboratory. ATLAS accelerator used to produce the beam in bursts of 0.3 ns time width and 412 ns repetition rate. Comparison with shell-model calculations.

1996Lh03: ²³²Th(p,F) E=25 MeV; on-line mass separation (IGISOL) and 12 Compton-suppressed Ge array (TARDIS); measured $E\gamma$, $I\gamma$, $\gamma\gamma$.

Level scheme is from 2009Ma40 (up to $(23/2^{-})$, 4620 level same As that from 1996Lh03).

⁹⁷Zr Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} &	Comments
0.0	1/2+	16.749 h 8	$\%\beta^-=100$ $\%\beta^-$: from Adopted Levels.
1103.11 8	$3/2^{+}$		
1264.52 11	7/2+	102.8 ns 24	
1400.11 8	$(3/2^+, 5/2^+)$		
1807.30 11	$(7/2^{-})$		
2264.06 13	$(11/2^{-})$	1.7 ns <i>3</i>	$T_{1/2}$: measured by 1996Lh03.
2625.23 21	$(13/2^{-})^{\#}$		
3082.00 21	$(15/2^{-})^{@}$		
3780.2 3	$(19/2^{-})^{@}$		
4620.3 3	$(23/2^{-})^{@}$		
5569.9 4	$(25/2^{-})$		Configuration= $((\pi g_{9/2})^2(\nu h_{11/2}))$
			configuration: $25/2^-$ doublet member of this configuration (from β^- decay of $27/2^-$ (($\pi g_{9/2})(\nu g_{7/2}h_{11/2})$)).
			J ^{π} : log ft=4.7 from (27/2 ⁻) of ⁹⁷ Y β ⁻ -decay parent.
5606.4 4	$(27/2^{-})$		Configuration= $((\pi g_{9/2})^2 (\nu h_{11/2}))$
			configuration: $27/2^-$ doublet member of this configuration (from β^- decay of $27/2^-$ (($\pi g_{9/2}$)($\nu g_{7/2}h_{11/2}$))).
			J^{π} : log ft=4.8 from (27/2 ⁻) of ⁹⁷ Y β^{-} -decay parent.

[†] From a least squares fit to $E\gamma's$.

[‡] ADOPTED values (some values commented separately are adopted from this dataset).

[#] Postulated by 2009Ma40 based on the spin difference $\Delta J=2$ between (15/2⁻), 3082 and (11/2⁻), 2264 covered by two γ 's, whence $\Delta J=1$ (and $\Delta \pi=No$) is most likely for each.

^(a) Postulated by 2009Ma40 based on the spin difference $\Delta J=8$ between (27/2⁻), 5606 and (11/2⁻), 2264 covered by four γ 's, whence $\Delta J=2$ (and $\Delta \pi=No$) is most likely for each.

& ADOPTED values.

⁹⁷Y β⁻ decay (142 ms) 2009Ma40,1996Lh03 (continued)

β^{-} radiations

 β^- feeding deduced by 2009Ma40 from off-beam $\gamma\gamma\gamma$ data: 2.9 % 6 on 5570 level, and 2.3 % 7 on 5606 level (per 100 decays of the parent).

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft	Comments	
(4605 <i>11</i>)	5606.4	44 <i>11</i>	4.79 <i>14</i>	av $E\beta = 2031.2 53$	
(4642 <i>11</i>)	5569.9	56 6	4.70 <i>10</i>	av $E\beta = 2048.7 53$	

[†] I β per 100 decays of the parent through this decay branch.

[±] For absolute intensity per 100 decays, multiply by 0.052 9.

 $\gamma(^{97}\text{Zr})$

I γ normalization: based on 100% β^- feeding of highest states, 5606, (27/2⁻) and 5570, (25/2⁻) from the 142 ms isomeric state In ⁹⁷Y, which represents 5.2 % 9 of the isomer's total decay.

E_{γ}^{\ddagger}	I_{γ} #@	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult.	α^{\dagger}	Comments
161.4 <i>I</i>	71 3	1264.52	7/2+	1103.11	3/2+	[E2]	0.195	$\alpha(K)=0.1661\ 24;\ \alpha(L)=0.0237\ 4;\alpha(M)=0.00413\ 6;\ \alpha(N+)=0.000586\ 9\alpha(N)=0.000558\ 8;\ \alpha(O)=2.85\times10^{-5}\ 4\alpha(N)=0.000561\ 9;\ \alpha(O)=2.86\times10^{-5}\ 5I_{\gamma}:\ 73\ (1996Lh03).$
297.0 1	5.6 14	1400.11	$(3/2^+, 5/2^+)$	1103.11	$3/2^{+}$			I_{γ} : 7 (1996Lh03).
361.2 2	39 4	2625.23	$(13/2^{-})$	2264.06	$(11/2^{-})$			I_{γ} : 36 14 (1996Lh03).
407.2 1	29 <i>3</i>	1807.30	$(7/2^{-})$	1400.11	$(3/2^+, 5/2^+)$			I_{γ} : 34 (1996Lh03).
456.8 <i>1</i>	37.5 13	2264.06	$(11/2^{-})$	1807.30	$(7/2^{-})$			I_{γ} : 40 (1996Lh03).
456.8 2	39 4	3082.00	$(15/2^{-})$	2625.23	$(13/2^{-})$			I_{γ} : 36 14 (1996Lh03).
542.8 <i>1</i>	8.1 13	1807.30	$(7/2^{-})$	1264.52	$7/2^{+}$			I_{γ} : 6 (1996Lh03).
698.2 2	100	3780.2	$(19/2^{-})$	3082.00	$(15/2^{-})$			
817.9 2	61 4	3082.00	$(15/2^{-})$	2264.06	$(11/2^{-})$			I _γ : 64 <i>14</i> (1996Lh03).
840.1 <i>1</i>	100	4620.3	$(23/2^{-})$	3780.2	$(19/2^{-})$			
949.6 2	56 6	5569.9	$(25/2^{-})$	4620.3	$(23/2^{-})$			
986.1 2	44 11	5606.4	$(27/2^{-})$	4620.3	$(23/2^{-})$			
999.5 <i>1</i>	62.5 25	2264.06	$(11/2^{-})$	1264.52	$7/2^{+}$			I_{γ} : 60 (1996Lh03).
1103.1 <i>1</i>	76 <i>3</i>	1103.11	3/2+	0.0	$1/2^{+}$			I_{γ} : 74 (1996Lh03).
1400.1 <i>1</i>	24 3	1400.11	$(3/2^+, 5/2^+)$	0.0	$1/2^{+}$			I_{γ} : 27 (1996Lh03).

[†] Additional information 1.

[‡] From 2009Ma40.

[#] I γ per 100 decays of the parent through this decay branch. 2009Ma40 found that the intensity of the γ flux from the highest 5606 and 5570 levels (both fed by β^- and decayed by 986 γ and 950 γ , respectively) down to the 2264 level is unchanged. Based on this the I γ 's for the highest-lying γ rays were deduced from I(986 γ)+I(950 γ)=100% with known branching ratio from the β^- feeding; for the other γ 's the branching ratios given In ²³⁸U(⁴⁸Ca,F γ) dataset (also measured by 2009Ma40) were used to deduce the I γ 's.

[@] For absolute intensity per 100 decays, multiply by 0.052 9.

97 Y β^- decay (142 ms) 2009Ma40,1996Lh03

 $^{97}_{40}{\rm Zr}_{57}$