97 Sr β^- decay 1981PfZZ,1990Bu01

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 111, 525 (2010)	19-Nov-2009

Parent: ⁹⁷Sr: E=0.0; $J^{\pi}=1/2^+$; $T_{1/2}=429$ ms 5; $Q(\beta^-)=7470$ 16; $\%\beta^-$ decay=100.0 ⁹⁷Sr-ADOPTED values for ⁹⁷Sr.

1981PfZZ: ²³⁵U(n,F), E=th; mass separator measured: E γ , I γ , ce, prompt and delayed $\gamma\gamma$, $\beta\gamma$. Ge(Li); Si(Li), surface barrier detector for the fissions. Δ E, Δ I γ and unassigned gammas from priv comm to 1985Ha28.

1990Bu01: measured $T_{1/2}$ by centroid shift method.

1998Lh03,1996Lh03,1996Lh05: 1998Lh03 report data measured previously by 1996Lh03,1996Lh05 In 232 Th(P,F γ) E=25 MeV reaction with IGISOL and TARDIS (12 Compton-suppressed Ge detectors); comparison with 1981PfZZ data and two new γ 's found (see table).

Other: 1975Gu03.

97Y Levels

$J^{\pi \dagger}$	T _{1/2} ‡	Comments
(1/2 ⁻)	3.75 [†] s 3	$\%\beta^{-}=100.0; \ \%\beta^{-}n=0.055 \ 4$ $\%\beta^{-}, \ \%\beta^{-}n: \text{ from Adopted Levels.}$
$(9/2)^+$	1.17 [†] s <i>3</i>	$\%\beta^{-}>99.3; \%IT<0.7; \%\beta^{-}n<0.08$ $\%\beta^{-},\%IT,\%\beta^{-}n:$ from Adopted Levels.
1/2,3/2	44 ps <i>3</i>	
$(3/2^{-}, 5/2^{-})$	≤4 ps	
$(5/2^+)$	12 ps 5	
$(5/2^+, 7/2^+)$	21 ps 4	
1/2,3/2		
1/2,3/2	≤9 ps	
(3/2 ⁻)		T _{1/2} : 1990Bu01 give T _{1/2} <0.2 ps measured by centroid shift method. However, this T _{1/2} gives B(E1)(W.u.)>0.014 for the [E1] 480.0 γ which is higher than the limit set by RUL.
		•
$1/2^+, 3/2^+$	<2.3 ps	
$1/2^+, 3/2^+$	<7 ps	
$\frac{1/2^+, 3/2^+}{(1/2^+, 3/2^+)}$ $\frac{1/2^+, 3/2^+}{1/2^+, 3/2^+}$	≤3.3 ps	
	$\frac{J^{\pi^{\dagger}}}{(1/2^{-})}$ $(9/2)^{+}$ $\frac{1/2,3/2}{(3/2^{-},5/2^{-})}$ $(5/2^{+})$ $(5/2^{+},7/2^{+})$ $\frac{1/2,3/2}{(3/2^{-})}$ $\frac{1/2^{+},3/2^{+}}{1/2^{+},3/2^{+}}$ $\frac{1/2^{+},3/2^{+}}{(1/2^{+},3/2^{+})}$ $\frac{1/2^{+},3/2^{+}}{1/2^{+},3/2^{+}}$	$\begin{array}{c c} \mathbf{J}^{\pi\dagger} & \mathbf{T}_{1/2}^{\ddagger} \\ \hline (1/2^{-}) & 3.75^{\dagger} \text{ s } 3 \\ \hline (9/2)^{+} & 1.17^{\dagger} \text{ s } 3 \\ \hline 1/2,3/2 & 44 \text{ ps } 3 \\ \hline (3/2^{-},5/2^{-}) & \leq 4 \text{ ps} \\ \hline (5/2^{+}) & 12 \text{ ps } 5 \\ \hline (5/2^{+},7/2^{+}) & 21 \text{ ps } 4 \\ \hline 1/2,3/2 \\ \hline 1/2,3/2 \\ \hline (3/2^{-}) & \leq 9 \text{ ps} \\ \hline 1/2^{+},3/2^{+} & <7 \text{ ps} \\ \hline 1/2^{+},3/2^{+} & <7 \text{ ps} \\ \hline (1/2^{+},3/2^{+}) \\ \hline (1/2^{+},3/2^{+}) \\ \hline 1/2^{+},3/2^{+} & \leq 3.3 \text{ ps} \\ \hline \end{array}$

[†] From Adopted Levels.

[‡] From $\beta\gamma\gamma(t)$ by centroid shift method (1990Bu01), unless otherwise noted.

β^{-} radiations

 $I\beta^-$ calculated from the I γ (absolute) balance in the level scheme. No β^- to 97 Y g.s. (1981PfZZ). $\Sigma I\beta^-=85.6\%$. The remainder of the intensity could be accounted for by the gammas not placed in the level scheme ($\Sigma I\gamma=18.1$).

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
(4911 <i>16</i>)	2558.6	1.7 <i>4</i>	5.51 <i>11</i>	av $E\beta$ =2180.9 77
(5034 <i>16</i>)	2435.9	4.2 <i>6</i>	5.16 7	av $E\beta$ =2240.0 77
(5183 <i>16</i>)	2287.4?	3.1 <i>4</i>	5.35 6	av $E\beta$ =2311.5 77

Continued on next page (footnotes at end of table)

97 Sr β^- decay 1981PfZZ,1990Bu01 (continued)

β^{-} radiations (continued)

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
(5258 16)	2211.91	40 5	4.27 6	av Eβ=2347.8 77
(5349 16)	2121.19	10.0 12	4.91 6	av $E\beta = 2391.5$ 77
(5565 16)	1904.86	17.8 22	4.73 6	av $E\beta = 2495.7 77$
				E(decay): 5547 40 (1984BIZN).
(5622 [‡] 16)	1848.23	< 0.8	>6.1	av E β =2522.9 77
				$I\beta^{-}$: GTOL upper limit (method 1): 1.00.
(5670 16)	1799.6	1.2 5	5.94 19	av $E\beta = 2546.4$ 77
(5731 16)	1738.8?	1.1 4	6.00 16	av $E\beta = 2575.778$
(5856 16)	1613.8?	1.5 3	5.91 9	av $E\beta = 2635.978$
(6042 [‡] 16)	1428.11	<2.1	>5.8	av Eβ=2725.4 78
				$I\beta^{-}$: GTOL upper limit (method 1): 2.17.
(6150 16)	1319.54			$I\beta^{-}$: GTOL upper limit (method 1): 2.56.
(6516 16)	953.82	<4	>5.7	av $E\beta = 2953.978$
				$I\beta^{-}$: GTOL upper limit (method 1): 5.32.
(6773 16)	697.32	1.1 8	6.3 4	av $E\beta = 3077.577$
				$I\beta^{-}$: GTOL upper limit (method 1): 2.07.

[†] Absolute intensity per 100 decays.

[‡] Existence of this branch is questionable.

 $\gamma(^{97}\mathrm{Y})$

I γ normalization: normalization factor=0.0250 25 obtained from the absolute intensity measurement, I γ (307.1 γ)=10 *I* per 100 ⁹⁷Sr decays (1989WaZV).

Previous reports by 1981PfZZ: 1976MoZC, 1976SaYW.

All data are from 1981PfZZ, unless otherwise noted.

 ΔE , $\Delta I \gamma$: from 1998Lh03.

E_{γ}	$I_{\gamma}^{\#}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	$\alpha^{@}$	Comments
109.4 3	10 15	1428.11	$(5/2^+, 7/2^+)$	1319.54	(5/2+)			
165.8 [‡] 6	22 [‡] 8	1904.86	$1/2^+, 3/2^+$	1738.8?	1/2,3/2			
186.0 <i>3</i>	4 2	1613.8?	1/2,3/2	1428.11	$(5/2^+, 7/2^+)$			
216.4 <i>3</i>	22 4	2121.19	$1/2^+, 3/2^+$	1904.86	$1/2^+, 3/2^+$			
273.0 <i>3</i>	20 4	2121.19	$1/2^+, 3/2^+$	1848.23				
307.1 2	400 40	2211.91	1/2+,3/2+	1904.86	1/2+,3/2+	(M1)	0.00941	$\alpha(K)=0.00830 \ 12; \ \alpha(L)=0.000928 \ 13; \alpha(M)=0.0001587 \ 23; \alpha(N+)=2.28\times10^{-5} \ 4 \alpha(N)=2.13\times10^{-5} \ 3; \ \alpha(O)=1.482\times10^{-6} \ 21$
310.6 <i>3</i>	65 10	1738.8?	1/2,3/2	1428.11	$(5/2^+, 7/2^+)$			
^x 352.2 3	40 6							
363.6 4	50 10	2211.91	$1/2^+, 3/2^+$	1848.23				
365.8 <i>3</i>	140 15	1319.54	(5/2+)	953.82	(3/2 ⁻ ,5/2 ⁻)	(E1)	0.00267	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00236 \ 4; \ \alpha(\mathbf{L}) = 0.000258 \ 4; \\ &\alpha(\mathbf{M}) = 4.40 \times 10^{-5} \ 7; \\ &\alpha(\mathbf{N}+) = 6.29 \times 10^{-6} \ 9 \\ &\alpha(\mathbf{N}) = 5.89 \times 10^{-6} \ 9; \ \alpha(\mathbf{O}) = 4.02 \times 10^{-7} \ 6 \end{aligned}$
^x 409.0 4	14 4							
412.3 3	95 10	2211.91	1/2+,3/2+	1799.6	(3/2 ⁻)	(E1)	0.00196	α (K)=0.001731 25; α (L)=0.000189 3; α (M)=3.22×10 ⁻⁵ 5;

Continued on next page (footnotes at end of table)

From ENSDF

			⁹⁷ Sr (³⁻ decay	1981PfZZ,	1990Bu01	(continued)	
					$\gamma(^{97}\mathrm{Y})$ (conti	inued)		
Eγ	$I_{\gamma}^{\#}$	E_i (level)	\mathbf{J}_i^π	E_f	J_f^π	Mult. [†]	α [@]	Comments
								α (N+)=4.61×10 ⁻⁶ 7 α (N)=4.32×10 ⁻⁶ 6:
								$\alpha(0) = 2.96 \times 10^{-7} 5$
420.3 <i>3</i>	40 10	1848.23		1428.11	$(5/2^+, 7/2^+)$			
x471.0 3	17 4	1400 11	(5/2+7/2+)	052.92	(2 0-5 0-)			
474.1 5	35 10	1428.11	$(3/2^+, 7/2^+)$ $1/2^+, 3/2^+$	935.82	(3/2, 3/2) $(5/2^+, 7/2^+)$			
480.0 3	145 15	1799.6	$(3/2^{-})$	1319.54	$(5/2^+)$			
^x 508.1 5	54 10							
528.2 5	478	1848.23	1/2+ 2/2+	1319.54	$(5/2^+)$ $1/2^+ 2/2^+$			
585.2.5	30 10	1904.86	$1/2^{+}, 3/2^{+}$	1319.54	$(5/2^+)$			
622.5 5	19 7	1319.54	$(5/2^+)$	697.32	1/2,3/2			
652.2 <i>3</i>	455 50	1319.54	$(5/2^+)$	667.52	$(9/2)^+$	(E2)	0.00183	$\alpha(K)=0.001613\ 23;$
								$\alpha(L) = 0.000182.3;$ $\alpha(M) = 2.11 \times 10^{-5}.5;$
								$\alpha(M) = 5.11 \times 10^{-5}$ 5, $\alpha(N+) = 4.42 \times 10^{-6}$ 7
								$\alpha(N)=4.15\times10^{-6} 6;$
								$\alpha(O)=2.79\times10^{-7}$ 4
667.5 5	<2	667.52	$(9/2)^+$	0.0	$(1/2^{-})$			
*682.0 5	20 4	2211.01	1/2+ 3/2+	1526.6				
697.3 <i>3</i>	243 25	697.32	1/2,3/2	0.0	$(1/2^{-})$			
730.7 [‡] 5	29 [‡] 6	1428.11	$(5/2^+, 7/2^+)$	697.32	1/2,3/2			
760.5 2	51 5	1428.11	$(5/2^+, 7/2^+)$	667.52	$(9/2)^+$			
801.6 3	210 20	2121.19	$1/2^+, 3/2^+$	1319.54	$(5/2^+)$			
829.3 3 x872.2 5	20 3 14 5	1320.0		097.32	1/2,5/2			
892.2 3	178 18	2211.91	1/2+,3/2+	1319.54	$(5/2^+)$			
^x 905.0 4	62	1004.06	1/0+ 2/0+	052.02	(2)(2-5)(2-)			
951.0 4 953 8 3	82 20 854 80	1904.86	$1/2^+, 3/2^+$ $(3/2^-, 5/2^-)$	953.82	(3/2, 5/2)			
x982.4 5	38 5	955.62	(3/2 ,3/2)	0.0	(1/2)			
^x 1072.4 5	12 4							
1167.5 4	61 8	2121.19	$1/2^+, 3/2^+$	953.82	$(3/2^{-}, 5/2^{-})$			
1248.0.0	20 3 385 40	2211.91	$1/2^+$ $3/2^+$	953.82	$(3/2^{-}, 5/2^{-})$			
1423.2 5	12 3	2121.19	$1/2^+, 3/2^+$	697.32	1/2,3/2			
^x 1439.2 5	44 6							
1514.8 5	79 8	2211.91	$1/2^+, 3/2^+$ $1/2, 3/2^-$	697.32	1/2,3/2			
^x 1629.0 8	53	1015.67	1/2,3/2	0.0	(1/2)			
^x 1647.5 8	14 5							
^x 1667.5 5	17 5	2425.0	1 /2+ 2 /2+	(07.00	1 /2 2 /2			
1738.3 5 x1846 0 10	22 4 13 5	2435.9	1/2+,3/2+	697.32	1/2,3/2			
1862.0 10	18 5	2558.6	$1/2^+, 3/2^+$	697.32	1/2,3/2			
1905.0 3	1000	1904.86	1/2+,3/2+	0.0	(1/2 ⁻)	[E1]	6.42×10 ⁻⁴	$\alpha(K)=7.87\times10^{-5} II; \alpha(L)=8.40\times10^{-6} I2; \alpha(M)=1.431\times10^{-6} 20; \alpha(N+)=0.000554 8 \alpha(N)=1.93\times10^{-7} 3;$
								α (O)=1.366×10 ⁻⁸ 20; α (IPF)=0.000554 8

^x1984.0 5 34 8

Continued on next page (footnotes at end of table)

97 Sr β^- decay 1981PfZZ,1990Bu01 (continued)

$\gamma(^{97}\text{Y})$ (continued)

Eγ	$I_{\gamma}^{\#}$	E _i (level)	J_i^π	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [†]	α@	Comments
^x 2047.5 <i>10</i> 2121.3 <i>4</i>	16 5 74 <i>10</i>	2121.19	1/2+,3/2+	0.0 (1/2 ⁻)	[E1]	7.83×10 ⁻⁴	$\alpha(K)=6.69\times10^{-5} \ 10; \ \alpha(L)=7.13\times10^{-6} \ 10; \\ \alpha(M)=1.215\times10^{-6} \ 17; \ \alpha(N+)=0.000708 \\ 10$
2212.0 4	385 <i>30</i>	2211.91	1/2+,3/2+	0.0 (1/2 ⁻)	[E1]	8.39×10 ⁻⁴	$\begin{split} &\alpha(\mathrm{N}) = 1.638 \times 10^{-7} \ 23; \ \alpha(\mathrm{O}) = 1.160 \times 10^{-8} \ 17; \\ &\alpha(\mathrm{IPF}) = 0.000707 \ 10 \\ &\alpha(\mathrm{K}) = 6.29 \times 10^{-5} \ 9; \ \alpha(\mathrm{L}) = 6.70 \times 10^{-6} \ 10; \\ &\alpha(\mathrm{M}) = 1.141 \times 10^{-6} \ 16; \ \alpha(\mathrm{N}+) = 0.000768 \\ &11 \\ &\alpha(\mathrm{N}) = 1.539 \times 10^{-7} \ 22; \ \alpha(\mathrm{O}) = 1.090 \times 10^{-8} \ 16; \\ &\alpha(\mathrm{IPF}) = 0.000768 \ 11 \end{split}$
x2256.2 6	22 5						
2287.4 ^{&} 4	125 10	2287.4?	$(1/2^+, 3/2^+)$	0.0 (1/2 ⁻)			, , , , , , , , , , , , , , , , , , ,
2436.2 6	115 10	2435.9	1/2+,3/2+	0.0 (1/2 ⁻)	[E1]	9.73×10 ⁻⁴	$\alpha(K)=5.46\times10^{-5} 8; \ \alpha(L)=5.81\times10^{-6} 9; \\ \alpha(M)=9.90\times10^{-7} 14; \ \alpha(N+)=0.000911 13 \\ \alpha(N)=1.336\times10^{-7} 19; \ \alpha(O)=9.47\times10^{-9} 14; \\ \alpha(IPF)=0.000911 13$
^x 2510.3 10	10 5						
2557.8 10 ^x 2603.3 8 ^x 2688.2 8 ^x 2767.5 8 ^x 2800.0 10 ^x 2821.0 10 ^x 2900.0 10 ^x 2929.0 10	48 10 28 7 50 10 72 15 19 5 21 6 88 15 30 8	2558.6	1/2+,3/2+	0.0 (1/2 ⁻)			

 † Multipolarities were deduced by 1981PfZZ from conversion electron measurements (data not given).

[‡] From 1998Lh03.

[#] For absolute intensity per 100 decays, multiply by 0.0250 25.

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

& Placement of transition in the level scheme is uncertain.

^{*x*} γ ray not placed in level scheme.

S