⁹⁷Ru ε decay 1974Hu05,1971Ph02,1970Co02

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 111, 525 (2010)	19-Nov-2009

Parent: ⁹⁷Ru: E=0.0; $J^{\pi}=5/2^+$; $T_{1/2}=2.83 \text{ d } 23$; $Q(\varepsilon)=1108 9$; $\%\varepsilon+\%\beta^+$ decay=100.0

⁹⁷Tc Levels

Level scheme is that proposed by 1969Gr04 with levels added by subsequent researchers.

E(level)	$J^{\pi \dagger}$	T _{1/2}	Comments
0.0	9/2+	4.21×10 ⁶ [†] y <i>16</i>	
96.5	$1/2^{-}$	91.0 [†] d 6	
216	7/2+	69 ps <i>19</i>	$T_{1/2}$: weighted average of: 90 ps 11 (1976Be34, measured (570γ)(215γ)(t)) and 51 ps 10 (1974Be24, measured (KLM Auger ce)(216 ce(K) & ce(L))(t)). Other: $T_{1/2}$ ≤0.15 ns (1973Ch26).
324	5/2+	0.45 ns 8	$T_{1/2}$: mean value (with uncertainty covering both values) of: 0.52 ns 6 (measured (KLM Auger ce)(108 ce(K))(t) (1974Be24)), 0.37 ns 2 (measured X(325 γ)(t) (1973Ch26)).
580	$3/2^{-}$		
657	$5/2^{-}$		
785	$5/2^{+}$		
855	$7/2^{+}$		
946?	$3/2^{-}$		
970	$7/2^{+}$		
995	$(3/2^+)$		
÷			

[†] From Adopted Levels.

ε, β^+ radiations

1958Ka95 measured the relative intensities of 91-d ⁹⁷Tc K x ray and 2.8-d ⁹⁷Ru K x ray and deduced the following branching in ⁹⁷Ru decay: 0.0171 % 2 to 91-d ⁹⁷Tc isomeric state and 99.9829 % 2 to ⁹⁷Tc g.s..

E(decay)	E(level)	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	Comments
(113 9) (138 9)	995 970	0.0088 <i>4</i> 0.144 <i>5</i>	7.58 <i>10</i> 6.57 8	ε K=0.824 6; ε L=0.142 5; ε M+=0.0345 12 ε K=0.834 4; ε L=0.1337 25; ε M+=0.0322 7
(162‡ 9)(253 9)(323 9)(451 9)(528 9)(784 9)	946? 855 785 657 580 324	0.0014 <i>11</i> 0.0522 <i>12</i> 1.065 <i>18</i> 0.033 <i>3</i> 0.0020 <i>3</i> 11.01 <i>18</i>	8.7 <i>4</i> 7.60 <i>5</i> 6.51 <i>5</i> 8.33 <i>6</i> 9.69 <i>8</i> 6.30 <i>4</i>	ε K=0.8405 22; ε L=0.1287 17; ε M+=0.0308 5 ε K=0.8525 8; ε L=0.1192 6; ε M+=0.02825 16 ε K=0.8568 5; ε L=0.1158 4; ε M+=0.02733 10 ε K=0.8610 3; ε L=0.11254 17; ε M+=0.02644 5 ε K=0.8625 2; ε L=0.11136 12; ε M+=0.02612 4 ε K=0.8653; ε L=0.10916 6; ε M+=0.02552 2 ε K(exp): 0.884 46 (1999Ka69).
(892 9)	216	87.69 9	5.51 4	$\varepsilon K = 0.8660; \varepsilon L = 0.10863 4; \varepsilon M + = 0.02538 1$ $\varepsilon K (exp): 0.886 18 (1999Ka69).$

[†] Absolute intensity per 100 decays.

[‡] Existence of this branch is questionable.

97 Ru ε decay	1974Hu05,197	1Ph02,1970Co02	(continued)
--------------------------------	--------------	----------------	-------------

 $\gamma(^{97}{
m Tc})$

Iy normalization: Σ (Iy(g.s.) + Iy(96.5 level)=100. It is assumed that there is no comparable direct ε decay to ⁹⁷Tc g.s. (second forbidden nonunique transition) or to the 96.5-keV level (first forbidden, unique transition).

1974Hu05: measured: $E\gamma$, $I\gamma$, $\gamma\gamma$;Ge(Li) detector.

1971Ph02: measured Ey, Iy, Ice, α , $\gamma\gamma$. For γ :Ge(Li)-Na(Tl) anticompton spec, for ce: Si(Li) detector.

1970Co02: measured Ey, Iy, $\gamma\gamma$;Ge(Li) detector.

1977Be33: measured $\gamma\gamma(\theta)$; Na(Tl) andGe(Li) detectors.

1977Kr03: measured $\gamma\gamma(\theta)$; Na(Tl) andGe(Li) detectors.

1976Ba39: measured $\gamma(\theta, H, T)$ from oriented nuclei.

1976Be34: measured $(570\gamma)(215\gamma)(t)$.

1974Be24: measured Ice, $(ce)(ce)T_{1/2}$.

1973Ch26: measured $X\gamma(t)$.

 \mathbf{N}

1970Ho01: measured E_γ, I_γ, $\gamma\gamma$; prod: ⁹⁶Ru(th n, γ), chem; detectorGe(Li) with FWHM=3.3 keV at 1332 keV. 1969Gr04: measured E_γ, I_γ, α , $\gamma\gamma$; prod: from ⁹⁷Ag, ⁹⁷Pd decay; detector:Ge(Li) for γ Si(Li) for ce. α calibration ¹³⁷Ba α (K)(89.4 γ)=0.0894.

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α &	Comments
108.79 <i>3</i>	0.140 15	324	5/2+	216	7/2+	M1+E2	+1.6 5	0.73 13	α (K)=0.59 <i>10</i> ; α (L)=0.111 <i>21</i> ; α (M)=0.020 <i>4</i> ; α (N+)=0.0031 <i>6</i> α (N)=0.0030 <i>6</i> ; α (O)=0.000111 <i>16</i> Mult., δ : from 1977Be33 includes results of 1971Ph02 and 1974Be24; K:L1:L2:L3=910 <i>170</i> : 100: 44 7: 50 8 (1974Be24). Theory (δ =1.6) K:L1:L2:L3=1068: 100: 44: 55.
114.4 2	0.0020 4	970	7/2+	855	7/2+				E_{γ} : weighted average of measurements by 1974Hu05, 1971Ph02. I_{γ} : from 1974Hu05.
185.00 [#] 1	0.0054 [#] 25	970	$7/2^{+}$	785	$5/2^{+}$				
215.70 3	100	216	7/2+	0.0	9/2+	M1+E2	+0.27 2	0.0378 7	α (N)=0.0001143 23; α (O)=7.30×10 ⁻⁶ 12 δ : other: δ =+0.20 5 (1977Be33, includes data from 1971Ph02 and 1974Be24); δ =+0.27 2 or +6.2 5 (1976Ba39) K:L1:L2:L3=910 10: 100: 6 3: 4 2 (1974Be24); α (K)exp=0.0350 12, K/LM=7.0 (1971Ph02); α (K)exp=0.0340 30, K/LM=5.55 (1969Gr04). Theory (δ =0.27): K:L1:L2:L3=918: 100: 6.5: 4.1.
324.49 4	12.6 2	324	5/2+	0.0	9/2+	E2		0.0196	$\alpha(K)=0.01696\ 24;\ \alpha(L)=0.00219\ 3;\ \alpha(M)=0.000399\ 6;$ $\alpha(N+)=6.56\times10^{-5}\ 10$ $\alpha(N)=6.20\times10^{-5}\ 9;\ \alpha(O)=3.51\times10^{-6}\ 5$ Mult.: E2 from $\alpha(K)exp=0.0178\ 8,\ K/LM=6.5\ (1971Ph02);$ $\alpha(K)exp=0.016\ 3,\ K/LM=6.5\ (1969Gr04).$
460.56 <i>4</i>	0.141 4	785	5/2+	324	5/2+	M1+E2	-0.6 +4-3	0.0055 3	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0048 \ 3; \ \alpha(\mathbf{L}) = 0.00056 \ 4; \ \alpha(\mathbf{M}) = 0.000102 \ 8; \\ &\alpha(\mathbf{N}+) = 1.73 \times 10^{-5} \ 11 \\ &\alpha(\mathbf{N}) = 1.62 \times 10^{-5} \ 11; \ \alpha(\mathbf{O}) = 1.06 \times 10^{-6} \ 5 \\ &\text{Mult.}_{,\delta}; \ \text{from 1977Kr03. Other: } -1.6 \ 4 \ \text{or } -0.01 \ 10 \ (1977\text{Be33}); \\ &\alpha(\mathbf{K}) \exp = 0.0050 \ (1971\text{Ph02}). \end{aligned}$

				⁹⁷ Ru ε decay		1974Hu05,1971Ph02,1970Co02 (continued)			
							$\gamma(^{97}\text{Tc})$ (con	ntinued)	
${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α &	Comments
483.76 [#] 10	0.0023 [#] 3	580	3/2-	96.5	1/2-	M1+E2	-0.6 5	0.0048 3	$\alpha(K)=0.00425\ 24;\ \alpha(L)=0.00050\ 4;\ \alpha(M)=9.0\times10^{-5}\ 7;$ $\alpha(N+)=1.52\times10^{-5}\ 11$ $\alpha(N)=1.42\times10^{-5}\ 11;\ \alpha(O)=9.3\times10^{-7}\ 4$
531.06 9	0.0031 3	855	$7/2^{+}$	324	$5/2^{+}$				
560.34 4	0.038 3	657	5/2-	96.5	1/2-	[E2]		0.00362	α (K)=0.00316 5; α (L)=0.000380 6; α (M)=6.88×10 ⁻⁵ 10; α (N+)=1.152×10 ⁻⁵ 17 α (N)=1.084×10 ⁻⁵ 16; α (O)=6.78×10 ⁻⁷ 10
569.29 4	1.02 2	785	5/2+	216	7/2+	M1+E2	+0.128 14	0.00313	$\alpha(N) = 1.034 \times 10^{-10}, \ \alpha(O) = 0.78 \times 10^{-10} \text{ IO}$ $\alpha(K) = 0.00275 \ 4; \ \alpha(L) = 0.000314 \ 5; \ \alpha(M) = 5.68 \times 10^{-5} \ 8;$ $\alpha(N+) = 9.66 \times 10^{-6} \ 14$ $\alpha(N) = 9.05 \times 10^{-6} \ 13; \ \alpha(O) = 6.12 \times 10^{-7} \ 9$
									Mult., δ : from 1977Kr03. Other: +2.8 5 or +0.13 5 (1977Be33), δ =+0.12 5 or>16 (1976Ba39); M1,E2 from α (K)exp=0.00314 15 (1971Ph02).
639.72 2	0.0098 7	855	7/2+	216	7/2+	(M1+E2)	-2.3 +6-1	0.00249	$\alpha(K)=0.00218 \ 4; \ \alpha(L)=0.000256 \ 5; \ \alpha(M)=4.65\times10^{-5} \ 8.$ $\alpha(N+)=7.82\times10^{-6} \ 13$ $\alpha(N)=7.35\times10^{-6} \ 12; \ \alpha(O)=4.72\times10^{-7} \ 7$
645.23 5	0.072 4	970	7/2+	324	5/2+	M1+E2	-1.2 +8-9	0.00240 7	$\alpha(K) = 0.00211 \ 6; \ \alpha(L) = 0.000245 \ I0; \ \alpha(M) = 4.44 \times 10^{-5}$ $I9; \ \alpha(N+) = 7.5 \times 10^{-6} \ 3$ $\alpha(N) = 7.0 \times 10^{-6} \ 3; \ \alpha(Q) = 4.60 \times 10^{-7} \ 7$
									$\alpha(N) = 7.0 \times 10^{-5}$; $\alpha(O) = 4.00 \times 10^{-7}$ Mult · M1 E2 from $\alpha(K) \exp(-0.00125/20)$ (1971Pb02)
670.21 2	0.0100 4	995	(3/2 ⁺)	324	5/2+	(M1+E2)		0.00218 5	$\alpha(K)=0.00191 \ 4; \ \alpha(L)=0.000221 \ 9; \ \alpha(M)=4.00\times10^{-5} \ 15; \ \alpha(N+)=6.77\times10^{-6} \ 22$
								2	$\alpha(N)=6.35\times10^{-6}\ 22;\ \alpha(O)=4.18\times10^{-7}\ 6$
753.99 <i>3</i>	0.088 3	970	7/2+	216	7/2+	M1+E2	-2.2 8	1.63×10 ⁻⁵	$\alpha(\mathbf{K}) = 0.001431 \ 20; \ \alpha(\mathbf{L}) = 0.0001662 \ 25; \\ \alpha(\mathbf{M}) = 3.01 \times 10^{-5} \ 5; \ \alpha(\mathbf{N}+) = 5.08 \times 10^{-6} \ 8 \\ \alpha(\mathbf{M}) = 4.572 \ 10^{-6} \ 7.5 \ \alpha(\mathbf{N}+) = 5.08 \times 10^{-6} \ 8 \\ \alpha(\mathbf{M}) = 4.572 \ 10^{-6} \ 7.5 \ \alpha(\mathbf{N}+) = 5.08 \times 10^{-6} \ 8 \\ \alpha(\mathbf{M}) = 4.572 \ 10^{-6} \ 7.5 \ \alpha(\mathbf{N}+) = 5.08 \times 10^{-6} \ 8 \\ \alpha(\mathbf{M}) = 4.572 \ 10^{-6} \ 7.5 \ \alpha(\mathbf{N}+) = 5.08 \times 10^{-6} \ 8 \\ \alpha(\mathbf{M}) = 4.572 \ 10^{-6} \ 7.5 \ \alpha(\mathbf{M}) = 4.533 \ 10^{-6} \ 8 \\ \alpha(\mathbf{M}) = 4.533 \ 10^{-6}$
									$\alpha(N)=4.7\times10^{-6}$ /; $\alpha(O)=3.11\times10^{-6}$ S Mult., δ : other: $\delta=-3.9$ 7 or +0.53 6 (1977Be33); M1,E2 from $\alpha(K)\exp=0.00151$ 12 (1971Ph02).
785.05 4	0.084 3	785	5/2+	0.0	9/2+	(E2)		1.47×10^{-3}	α (K)=0.001291 <i>18</i> ; α (L)=0.0001503 <i>21</i> ; α (M)=2.72×10 ⁻⁵ <i>4</i> ; α (N+)=4.59×10 ⁻⁶ 7
									$\alpha(N)=4.31\times10^{-6} 6; \alpha(O)=2.80\times10^{-7} 4$
050 10 1	0.0016.12	0468	2/2-	04.5	1/0-				Mult.: M1,E2 from α (K)exp=0.00141 <i>14</i> (1971Ph02).
850.1 ⁴ 4	0.0016 13	946?	$3/2^{-}$	96.5	$1/2^{-}$	141.52		1.00 10-3	E_{γ}, I_{γ} : from 19/1Ph02.
855.44 6	0.050 1	855	7/21	0.0	9/21	M1+E2	+0.3 2	1.23×10 ⁻⁵	$\alpha(\mathbf{K})=0.001082\ 16;\ \alpha(\mathbf{L})=0.0001223\ 18; \\ \alpha(\mathbf{M})=2.21\times10^{-5}\ 4;\ \alpha(\mathbf{N}+)=3.77\times10^{-6}\ 6 \\ \alpha(\mathbf{N})=3.53\times10^{-6}\ 5;\ \alpha(\mathbf{O})=2.40\times10^{-7}\ 4$
898.08 19	0.00021 6	995	(3/2+)	96.5	1/2-	(E1)		4.37×10 ⁻⁴	Mult.: M1,E2 from α (K)exp=0.00108 <i>12</i> (1971Ph02). α (K)=0.000385 <i>6</i> ; α (L)=4.29×10 ⁻⁵ <i>6</i> ; α (M)=7.74×10 ⁻⁶ <i>11</i> : α (N+)=1.316×10 ⁻⁶ <i>19</i>

ω

 $^{97}_{43}\mathrm{Tc}_{54}$ -3

L

^{*a*} Placement of transition in the level scheme is uncertain.

From ENSDF

Decay Scheme