⁹⁷Mo(**p**,**n**γ) **1979Xe01,1980La07,1982Ka26**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 111, 525 (2010)	19-Nov-2009

⁹⁷Tc Levels

1979Xe01: E(p)=1.5-8.0 MeV; measured E γ , I γ , $\gamma\gamma$, $\gamma(\theta)$, $\theta=0^{\circ}$ to 90°, excit;Ge(Li) detectors FWHM=1.9 keV at 1.33 MeV. 1980La07, 1982Ka26: E(p)=2.0-5.2 MeV; measured E γ , I γ , n γ , $\gamma\gamma$, excit, $\gamma(\theta)$, $\theta=0^{\circ}$ to 90°;Ge(Li) detectors with

FWHM=2.0-2.3 keV at 1.33 MeV. 1980La07 covers E(level)<1 MeV, 1982Ka26 covers E(level)>1 MeV.

1972Pi04: E(p)=3.0-6.0 MeV; measured $E\gamma$, $I\gamma$, $\gamma\gamma$;Ge(Li) detectors with FWHM=4.0 keV at 1.0 MeV.

1984Ad06: E(p)=3.5 MeV; measured $T_{1/2}$ with DSA (Doppler shift attenuation); Ge(Li) detectors with FWHM=1.74 keV at 1332 keV.

Level scheme is based on the work of 1979Xe01, 1980La07, and 1982Ka26. The levels below≈1 MeV are supported by the data from 97 Ru ε decay and other reactions and are reasonably well established. However, there is some disagreement between these authors about some of the higher levels. Because of the large number of levels proposed (65 by 1982Ka26, and 48 by 1979Xe01 for E(level)>1 MeV) a number of the more questionable levels have been omitted from this table. For additional levels, see 1979Xe01 and 1982Ka26.

$\mathbf{L}(\mathbf{Ievel})$ \mathbf{J} $\mathbf{I}_{1/2}$	Joininents
$\begin{array}{cccc} 0.0 & 9/2^+ \\ 96.57 & 9 & 1/2^- \\ 215.71 & 7/2^+ \end{array} J^{\pi}: \text{ not } 5/2 \text{ from } \gamma\gamma(\theta) \ (1979\text{XeO1}). \end{array}$	
324.46 4 $5/2^+$ 580.17 9 $3/2^ J^{\pi}$: $3/2$ from $\gamma(\theta)$.	
556.90 9 5/2 [−] ≥0.76 ps $T_{1/2}$: DSA of 560.4γ (1984Ad06).	
772.60 10 $13/2^+ \ge 0.35$ ps J^{π} : 13/2 from 772.6 γ excit (1980La07).	
$T_{1/2}$: DSA of 773.0y (1984Ad06).	
785.08 5 $5/2^+$ 0.33 ps +17-10 $T_{1/2}$: DSA of 460.5 γ , 569.3 γ (1984Ad06	5).
832.76 10 $11/2^{(+)} \ge 0.35$ ps $J^{\pi}: \gamma(\theta); \gamma$ excit J<13/2.	
$T_{1/2}$: DSA of 832.9 γ (1984Ad06).	
855.44 6 $7/2^+$ >0.37 ps J^{π} : 7/2 from $\gamma(\theta)$.	
$T_{1/2}$: DSA of 639.7v. 855.6v (1984Ad06	<u>()</u>
$1_{1/2}^{-1}$ 2511 of 05777 , every (1901) and $1_{1/2}^{-1}$ 861 58 9 (9/2 ⁺) >0.38 ps I^{π} excit suggests high spin	
$T_{1/2}$: DSA of 861.8 γ (1984Ad06).	
946 69 13 $3/2^{-1}$ 0 22 ps +9-6 $I^{\pi} \cdot 3/2$ from $\gamma(\theta)$	
$T_{1/2}$: DSA of 850 4v (1984Ad06)	
969 65 9 $7/2^+$ $I^{\pi}: \gamma(\theta) \neq \text{excit} (19801 a07)$	
994 65 11 (3/2 ⁺) 0 17 ps +7-4 $I^{\pi} \sim \gamma(\theta)$ agrees with I=3/2 (1979Xe01)	
$T_{1/2}$: DSA of 670 2 γ (1984 Ad06)	
$1049\ 21\ 9\ 3/2^{-} > 0\ 21\ \text{ns}$ $I_{1/2}^{\pi}$: (392 γ 469 γ) excit support 3/2 assign	ument (1982Ka26)
$T_{10}: DSA \text{ of } 302 \text{ support } 5/2 \text{ using in } 5/2 \text{ or } 100 \text{ support } 5/2 \text{ using in } 100 \text{ support } 100 $	984 A d06)
1126 62 0 $11/2^{(+)}$ \overline{M}_{1} 1127 $\alpha(0)$ astablished 11/2 assignment	$(1080 F_{2})$
$1120.05 \ 9 \ 11/2^{\circ}$ J $112/\gamma(6)$ establishes $11/2$ assignment 1141.22.9 (7/2 ⁺) 0.29 ms + 25 10 \overline{M} , 7/2 from $r(0)$ of 256 r and 817 r	. (1962Ka20).
1141.22 6 (1/2) 0.28 ps $+25-10$ J \cdot 1/2 from $\gamma(\theta)$ of 550 γ and 617 γ .	
$11(5.2.5)$ (0/2.7/2) \overline{M}_{1} from $\mu(0)$ and 10.97 (1964A000).	
1105.2 5 $(9/2, 1/2)$ J 10011 $\gamma(\theta)$, excit. 1100 50 15 $(0/2^{\pm})$ 0.24 ms + 27 10 JT from $\gamma(\theta)$	
1199.50 15 (9/2°) 0.24 ps +57-10 J [*] . from $\gamma(\theta)$.	
$I_{1/2}^{(2)}: DSA \text{ of } 8/5.4\gamma, 983.9\gamma (1984Ad00)$)).
$1219.86 \ 12 \ (1/2^{+}) \qquad J^*: 895\gamma(\theta) \text{ favors } J=1/2 \ (1982Ka26).$	
$1240.02.9$ (1/2) ≥ 0.26 ps J^{*} : (916 γ , 583 γ)(θ) favor J=1/2.	
$T_{1/2}$: DSA of 583.2 γ (1984Ad06).	
12/4.5 3	
1277.79 13 (9/2) J^{A} : $\gamma(\theta)$, γ excit (1982Ka26).	
1310.2.2 9/2 J^{n} : from $\gamma(\theta)$ and excit.	
1348.9 2	

Continued on next page (footnotes at end of table)

97 **Mo(p,n** γ) 1979Xe01,1980La07,1982Ka26 (continued)

97Tc Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments			
1372.3 <i>4</i> 1379? 1379.9 2	$(3/2,5/2^{-})$ $3/2^{+},5/2^{+}$ $(9/2^{+})$	0.09 ps + 5 - 3	I^{π} : from $\gamma(\theta)$ and excit			
1396.88 14		0.09 ps 10 0	$T_{1/2}$: DSA of 547.3 γ , 1164.4 γ (1984Ad06).			
1409.5 <i>3</i> 1441.1 <i>10</i> 1480.3 <i>6</i>	(7/2 ⁻)	≥0.21 ps	J^{n} : 7/2, 9/2 favored by $\gamma(\theta)$. T _{1/2} : DSA of 1116.6 γ (1984Ad06).			
1512.36 11		0.25 ps +18-9	$T_{1/2}$: DSA of 1188.3 γ (1984Ad06).			
1518.5 <i>3</i>	(3/2 ⁻)	0.21 ps +22-8	J^{π} : 3/2 suggested by $\gamma(\theta)$. The DSA of 938 5 γ (1984 4 d06)			
1523.1 <i>4</i> 1580.5 <i>4</i>	$(5/2^+, 7/2, 9/2^+)$ $(5/2, 7/2^-)$	0.044 ps +14-10	$T_{1/2}$: DSA of 1198.9 γ (1984Ad06).			
1649.4 2	3/2+,5/2+	0.4 ps 3	J^{π} : excit suggests 3/2. T _{1/2} : 0.08 ps \leq T _{1/2} \leq 0.69 ps from DSA of 1325.5 γ (1984Ad06).			
1677.2 7						
1692.9 <i>3</i>	$(3/2^+, 5/2, 7/2)$		J^{π} : $\gamma(\theta)$ favor 7/2, 9/2.			
1707.7 3	(7/2)	0.025 ps +9-6	J^{π} : $\gamma(\theta)$ and excit.			
1700 4 0	(2)(2+ 5)(2 7)(2)		$T_{1/2}$: DSA of 1383.8 γ (1984Ad06).			
1722.4 8	$(3/2^+, 5/2, 1/2)$ $(3/2^+, 5/2, 7/2^-)$	>0.54 mg	$T_{\rm eff} = DSA of 1517.8 c (1084 A d06)$			
1755.5 4	(5/2, 5/2, 7/2)	≥0.34 ps	$I_{1/2}$. DSA 01 1517.07 (1904Ad00). I^{π} : excit $\gamma(\theta)$ favor 5/2 7/2			
179674	(3/2,7/2) (3/2,5/2,7/2)		J : CXCR, y(0) lavor 3/2, 7/2.			
1815.7 4	$(9/2^+)$		J^{π} : 1600.2 $\gamma(\theta)$ suggests 9/2.			
1850.6 3	(3/2)	0.21 ps +22-8	J^{π} : from 1754 $\gamma \gamma(\theta)$ and excit (1982Ka26).			
		-	$T_{1/2}$: DSA of 1754.3 γ (1984Ad06).			
1856.1 5	$(3/2^+, 5/2^-)$					
1864.8 2	$(9/2^+)$		J^{n} : 1640.5 $\gamma(\theta)$ suggests 9/2.			
1895.9 /	$(5/2^+, 1/2^+, 9/2^+)$		J^{Λ} : from (1680 γ)(θ) and deexciting mode (1982Ka26).			
1914.1 4	(3/2, 3/2) (3/2, 5/2)		J^{π} : from γ excit.			
1940 6 7	(3/2, 3/2) (7/2)		I^{π} : from γ excit			
1949.4 4	$(9/2^+)$		J^{π} : from 1624 γ , 1733 $\gamma \gamma(\theta)$: γ excit.			
1987.0 5	(3/2)		J^{π} : from γ excit.			
1994.9 6						
2001.3 5						
2023.7 6						
2036.0 6	$(1/2^-, 3/2, 5/2^-)$					
2059.9 /	(9/2,11/2)		J [*] : from $\gamma(\theta)$, γ excit.			
2150 1 5	$(3/2^+ 5/2 7/2)$					
2168.8 6	(0/2 ,0/2,//2)					
2208.2 7						
2217.4 6						
2255.0 5	$(5/2^+, 7/2^-)$					

[†] From least squares fit to $E\gamma$. [‡] From Adopted Levels. If the adopted J^{π} assignment depends on data from this data set, then the specific arguments are given.

⁹⁷₄₃Tc₅₄-3

			⁹⁷ Mo(p	,n γ) 1	979Xe01	,1980La07,1	982Ka26 (continu	ued)
						$\gamma(^{97}\text{Tc})$		
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	J_f^π	Mult. [#]	$\delta^{\#}$	Comments
215.71	7/2+	215.70 5	100	0.0	9/2+	M1+E2	+0.27 2	δ: from adopted gammas; δ=+0.31 5 (1979Xe01), +0.50 +11-8 (1980La07).
324.46	5/2+	108.8 324.46.5	5 <i>1</i> 100	215.71 0.0	$7/2^+$ $9/2^+$	M1+E2 E2	+1.6 [@] 5	
580.17 656.90	3/2 ⁻ 5/2 ⁻	483.60 <i>4</i> 332.4 <i>3</i> 441.2	100 0.6 <i>1</i> <3	96.57 324.46 215.71	$1/2^{-}$ $5/2^{+}$ $7/2^{+}$ $1/2^{-}$	M1+E2	-0.6 5	
772.60	13/2+	560.35 5 772.6 1	100	96.37 0.0	$\frac{1}{2}$ 9/2 ⁺	E2 E2		$\delta: \delta(M3/E2) = -0.05 \ \delta \ (1979Xe01), -0.12 \ +8-9 \ (1980La07).$
785.08	5/2+	460.59 7 569.37 5 785 3 2	11.7 7 100 2 11 3	324.46 215.71	5/2 ⁺ 7/2 ⁺ 9/2 ⁺	M1+E2 M1+E2	$-0.6^{@} + 4 - 3$ +0.128 [@] 14	δ: other: +0.5 + I-4 (1979Xe01). δ: other: +0.7 + 2-7 (1979Xe01).
832.76	11/2 ⁽⁺⁾	832.8 1	100	0.0	9/2 ⁺	(M1+E2)		 δ: +0.45 11 or +4.4 1 (1984Ad06, based on the measurements of 1979Xe01, 1980La07).
855.44	7/2*	531.05 <i>10</i> 639.7 <i>1</i> 855.4 <i>1</i>	7.9 2 17.2 7 100 2	324.46 215.71 0.0	5/2+ 7/2+ 9/2+	(M1+E2) M1+E2	-2.3 +6-1 +0.3 2	
861.58	(9/2 ⁺)	645.8 2 861.6 <i>1</i> 200.0	15.1 <i>19</i> 100 <i>1</i>	215.71 0.0	9/2 ⁺ 5/2 ⁻	(M1+E2)	-0.51 ^{&} 21	E. L. a only scon by 10201 a07
940.09	5/2	290.0 366.6 2 622.4	19.0 25 4	580.17 324.46	3/2 ⁻ 3/2 ⁻ 5/2 ⁺	D^e (E1) f		$E_{\gamma}, I_{\gamma}: \gamma$ seen in coin only (1980La07)
969.65	7/2+	850.1 <i>1</i> 114.3 <i>3</i> 184.7 <i>4</i>	100 2 5.4 <i>11</i>	96.57 855.44 785.08	1/2 ⁻ 7/2 ⁺ 5/2 ⁺	M1+E2		δ : -10.5< δ <3.0 (1980La07).
		645.2 <i>2</i> 753.9 <i>1</i> 969.9 <i>3</i>	76 7 100 4 1.7 4	324.46 215.71 0.0	5/2+ 7/2+ 9/2+	M1+E2 M1+E2	-1.15 +8 <i>1</i> -87 -2.2 8	
994.65	$(3/2^+)$	670.2 <i>1</i> 898.0 <i>3</i>	100 <i>3</i> 11 <i>2</i>	324.46 96.57	5/2+ 1/2-	D ^e (E1) ^f		
1049.21	3/2-	392.2 <i>1</i> 469.2 <i>1</i> 724.7 <i>1</i>	100 5 61 5 84 18	656.90 580.17 324.46	5/2 ⁻ 3/2 ⁻ 5/2 ⁺	D D		
1126.63	$11/2^{(+)}$	911.0 2 1126.6 <i>1</i>	48 <i>13</i> 100 <i>4</i>	215.71 0.0	7/2 ⁺ 9/2 ⁺	(M1+E2)	-0.8 +3-5	
1141.22	(7/2+)	356.2 <i>1</i> 816.7 <i>1</i> 925.5 <i>3</i>	47 <i>10</i> 100 <i>5</i> 5.7 <i>14</i>	785.08 324.46 215.71	5/2 ⁺ 5/2 ⁺ 7/2 ⁺	(M1+E2) (M1+E2)	$-0.3^{\&} 2$ -0.8 + 4 - 9	
1165.2 1199.50	(9/2,7/2) (9/2 ⁺)	949.5 <i>5</i> 366.8	100	215.71 832.76	7/2 ⁺ 11/2 ⁽⁺⁾			E_{γ} , I_{γ} : weaker member of the 366.8-keV doublet.
		875.3 2	49 9	324.46	5/2+	(E2)	6	δ: δ(M3/E2)=+0.4 + 5-9 (1984Ad06).
1219.86	(7/2+)	983.5 2 895.4 2 1004.2 2	100 6 93 7 22 7	215.71 324.46 215.71	7/2 ⁺ 5/2 ⁺ 7/2 ⁺	(M1+E2) (M1+E2)	$-0.58^{& 4}$ -0.8 + 4 - 7	E_{γ}, I_{γ} : weaker member of a doublet where the stronger member is of unknown origin
		1219.8 2	100 7	0.0	9/2+			(1982Ka26). E_{γ},I_{γ} : strongest member of a triplet (1982Ka26).

Continued on next page (footnotes at end of table)

⁹⁷ Mo(p,n γ)	1979Xe01,1980La07,1982Ka26 (continued)
--------------------------------	--

				γ	(⁹⁷ Tc) (co	ontinued)		
E _i (level)	${ m J}^{\pi}_i$	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	Comments
1240.02	(7/2 ⁻)	293.6 583.16 5 659.6 1	35 100 <i>3</i> 88 <i>4</i>	946.69 656.90 580.17	3/2 ⁻ 5/2 ⁻ 3/2 ⁻	(M1+E2)	-0.34 ^{&} 24	I_{γ} : γ is a doublet with Coul.
		915.7 2 1024.4 2	20 <i>6</i> 29 <i>8</i>	324.46 215.71	5/2+ 7/2+	D		ex. in ⁹⁷ Mo (1982Ka26). I_{γ} : γ is a triplet with γ from 1349 level and with a γ in ⁹⁷ Mo
1274.5		617.5 <i>3</i> 694.8 6 1179 <mark>8</mark>	100 <i>4</i> 32 2	656.90 580.17 96.57	5/2 ⁻ 3/2 ⁻ 1/2 ⁻			
1277.79	(9/2 ⁻)	422.6	17	855.44	7/2+	D+Q		δ: δ = -0.38 + 8 - 11 or -1.7 3 (1982Ka26).
1310.2	9/2+	620.9 <i>1</i> 1062.0 <i>4</i> 1094.5 <i>2</i>	$\begin{array}{c} 100 \ 3 \\ \leq 6 \\ 100 \ 4 \end{array}$	656.90 215.71 215.71	5/2 ⁻ 7/2 ⁺ 7/2 ⁺	Q M1+E2		E _γ ,I _γ : doublet (1982Ka26). Mult.,δ: from $\gamma(\theta)$, δ =-0.14 +4-5 or -3.1 +4-5 (1982Ka26)
1348.9 1372.3	(3/2,5/2 ⁻)	1310.0 <i>3</i> 1024.4 <i>2</i> 715.9 <i>5</i> 1048.0 <i>6</i> 1275.0 <i>5</i>	97 12 100 8 100 15 65 12 68 9	0.0 324.46 656.90 324.46 96.57	9/2 ⁺ 5/2 ⁺ 5/2 ⁻ 5/2 ⁺ 1/2 ⁻	M1+E2	-0.63 +11-14	(1962Ka20). E_{γ}, I_{γ} : doublet (1982Ka26). E_{γ}, I_{γ} : γ is a triplet
1379?	3/2+,5/2+	1054 <i>8</i>		324.46	$5/2^+$			(1982Ka26).
1379.9	(9/2+)	547.2 2 1163.9 <i>3</i>	84 <i>4</i> 100 <i>4</i>	832.76 215.71	9/2 11/2 ⁽⁺⁾ 7/2 ⁺	(M1+E2) (M1+E2)	+0.33 +10-8	δ : +0.31 +4-3 or -1.96 +12-18 (1982Ka26).
1396.88 1409.5	(7/2 ⁻)	816.7 <i>1</i> 752.7 <i>4</i>	100 65 6	580.17 656.90	3/2 ⁻ 5/2 ⁻			I _γ : from 1979Xe01, 1982Ka26 observed this γ as part of a doublet.
1441.1 1480.3 1512.36		830.0 1084.9 4 1193.8 1116.6 823.4 6 855.45 7 932.8	28 52 7 100 3 100 100 61 4 18	580.17 324.46 215.71 324.46 656.90 656.90 580.17	3/2 ⁻ 5/2 ⁺ 7/2 ⁺ 5/2 ⁻ 5/2 ⁻ 3/2 ⁻	D,E2 ^e D,E2 ^e		
1518.5	(3/2 ⁻)	1188.0 <i>3</i> 938.2 <i>3</i> 1422.0 <i>4</i>	100 3 100 3 76 24	324.46 580.17 96.57	$5/2^+$ $3/2^-$ $1/2^-$	D,E2 ^e		
1523.1	(5/2 ⁺ ,7/2,9/2 ⁺)	1422.0 4 1198.7 4 1307.2 6 1523 5	100 <i>3</i> 36 20	324.46 215.71	$5/2^+$ $7/2^+$ $9/2^+$	D,E2 ^{e} D,E2 ^{e} D,E2 ^{e}		
1580.5	(5/2,7/2 ⁻)	340.4	20 9	1240.02	(7/2 ⁻)	D,E2		I _{γ} : from 1982Ka26, unweighted average of I γ relative to I γ (1255.7) and I γ (1364.9).
1649.4	3/2+,5/2+	924.2 1000.0 <i>10</i> 1255.7 <i>6</i> 1364.9 <i>5</i> 679.9 <i>3</i>	100 <i>4</i> 65 <i>4</i> 24 2 28 2 100	656.90 580.17 324.46 215.71 969.65	5/2 ⁻ 3/2 ⁻ 5/2 ⁺ 7/2 ⁺ 7/2 ⁺	D,E2 ^e		1/(100107)

Continued on next page (footnotes at end of table)

		-	(p, /)	177711001,1700	2407,120	(continued)		
$\gamma(^{97}\text{Tc})$ (continued)								
E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.#	Comments		
1649.4	3/2+,5/2+	793.7 5	19	855.44 7/2+	D,E2 ^e			
1677.2		1324.9 4 1097.1 10 1352.7 10 1462 08	16 100 <i>10</i> 47 6	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	D,E2°			
1692.9	(3/2 ⁺ ,5/2,7/2)	698.5 1368.2 6 1477 2 3	38 <i>14</i> 100 5	$\begin{array}{c} 213.71 & 7/2 \\ 994.65 & (3/2^+) \\ 324.46 & 5/2^+ \\ 215.71 & 7/2^+ \end{array}$				
1707.7	(7/2)	922.7 5 1383.0 5 1492.2 5	100 <i>1</i> 6 89 <i>13</i> 46 <i>1</i> 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	D,E2 ^e D,E2 ^e D F2 ^e			
1722.4	(3/2+,5/2,7/2)	727.9 752.6	10 13	994.65 $(3/2^+)$ 969.65 $7/2^+$	0,02			
1733.3	$(3/2^+, 5/2, 7/2^-)$	1153.0 6 1517.6 4	31 <i>21</i> 100 <i>5</i>	580.17 3/2 ⁻ 215.71 7/2 ⁺				
1779.1	(5/2,7/2)	993.5 8 1563.5 6 1779.4	100 8 61 3	$785.08 5/2^+ 215.71 7/2^+ 0.0 9/2^+$				
1796.7	(3/2,5/2,7/2)	1011.1 6 1141.3 <i>10</i> 1472.3 6	100 <i>10</i> 60 <i>10</i> 90 <i>13</i>	785.08 5/2 ⁺ 656.90 5/2 ⁻ 324.46 5/2 ⁺				
1815.7	(9/2+)	615.9 1491.1 5 1600 2 6	100 9 43 6	$\begin{array}{c} 1199.50 (9/2^{+}) \\ 324.46 5/2^{+} \\ 215.71 7/2^{+} \end{array}$	D+O	Mult $\cdot \delta = -0.14.7$ or $-3.1.7$		
1850.6	(3/2)	1193.7 <i>3</i> 1754 2	15 0	$656.90 \ 5/2^{-}$	DIQ			
1856.1	(3/2 ⁺ ,5/2 ⁻)	1754.2 1276.3 1530.8 <i>10</i> 1640.5 <i>8</i> 1759.8	47 <i>4</i> 100 <i>7</i>	$580.17 3/2^{-}$ $580.17 3/2^{-}$ $324.46 5/2^{+}$ $215.71 7/2^{+}$ $96.57 1/2^{-}$				
1864.8	(9/2+)	1009.6 <i>3</i> 1539.8 <i>6</i> 1648.9 <i>5</i>	100 7 16 3	855.44 7/2 ⁺ 324.46 5/2 ⁺ 215.71 7/2 ⁺				
1895.9	(5/2+,7/2+,9/2+)	1063.2 1680.2 1896 ^g		$\begin{array}{rrrr} 832.76 & 11/2^{(+)} \\ 215.71 & 7/2^+ \\ 0.0 & 9/2^+ \end{array}$	D+Q	δ : -0.21 <i>11</i> or -2.48 -11+6.		
1914.1	(3/2,5/2)	944.3 1058.7 1128.8 5 1589.9 6	100 7 33 4	969.65 7/2 ⁺ 855.44 7/2 ⁺ 785.08 5/2 ⁺ 324.46 5/2 ⁺		Mult.: $\gamma(\theta)$ is isotropic.		
1924.6	(3/2,5/2)	1698.5 1267.7 6 1344.3 7 1599.8 10 1709.4	100 5 24 4 8 4	215.71 7/2 ⁺ 656.90 5/2 ⁻ 580.17 3/2 ⁻ 324.46 5/2 ⁺ 215.71 7/2 ⁺		Mult.: $\gamma(\theta)$ is isotropic.		
1940.6	(7/2)	1616.1 1724 9		$324.46 \ 5/2^+$ 215 71 7/2 ⁺				
1949.4	(9/2+)	1094.9 ⁸ 1164.8 6 1624.7 5 1733 5	100 6 47 6	855.44 7/2 ⁺ 785.08 5/2 ⁺ 324.46 5/2 ⁺ 215.71 7/2 ⁺				
1987.0	(3/2)	1330.1 6 1406.8 7 1890 4	96 8 100 8	656.90 5/2 ⁻ 580.17 3/2 ⁻ 96.57 1/2 ⁻				
1994.9		1025.2		969.65 7/2+				

⁹⁷Mo(p,nγ) 1979Xe01,1980La07,1982Ka26 (continued)

					$\gamma(^{97}\text{Tc})$ (continued)
E _i (level)	${ m J}^{\pi}_i$	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	J_f^{π}
1994.9		1670.4		324.46	5/2+
		1779.2		215.71	7/2+
2001.3		1344.2 7	39 4	656.90	5/2-
		1421.2 6	100 7	580.17	3/2-
2023.7		1443.5 6	100	580.17	3/2-
2036.0	$(1/2^{-}, 3/2, 5/2^{-})$	1379.06		656.90	5/2-
		1939.5		96.57	1/2-
2059.9	(9/2,11/2)	1198.2		861.58	$(9/2^+)$
		1844.2		215.71	7/2+
2069.0		1412.1 5		656.90	5/2-
2150.1	$(3/2^+, 5/2, 7/2)$	1493.0 7		656.90	5/2-
		1825.8		324.46	5/2+
		1934.6		215.71	7/2+
2168.8		858.4		1310.2	9/2+
		1953.3		215.71	7/2+
		2168.9		0.0	9/2+
2208.2		1628.0 7		580.17	3/2-
2217.4		1362.0		855.44	7/2+
		1892.9		324.46	5/2+
		2001.7		215.71	7/2+
2255.0	$(5/2^+, 7/2^-)$	1393.8		861.58	$(9/2^+)$
		1675.4		580.17	3/2-
		1930.5		324.46	5/2+
		2038.3		215.71	7/2+

⁹⁷Mo(p,nγ) 1979Xe01,1980La07,1982Ka26 (continued)

[†] From 1979Xe01 for E(level)<1.5 MeV, unless otherwise noted; unweighted average of measurements by 1979Xe01 and 1982Ka26 (where available) for E(level)>1.5 MeV.

[‡] Relative intensity from each level given. Weighted average of measurements by 1972Pi04, 1979Xe01, 1980La07 for E(level)<1.0 MeV and unweighted average of measurements by 1979Xe01, 1982Ka26 for E(level)> 1.0 MeV, where available.

[#] From $\gamma(\theta)$ (1979Xe01,1980La07,1982Ka26), unless otherwise noted. The sign of δ as quoted in 1980La07 and 1982Ka26 has been amended to comply with the sign convention used in Nuclear Data Sheets (1970Kr03). D+Q transitions with significant admixture of Q ($\delta \ge 0.3$) are assumed to have M1+E2 multipolarity.

[@] From ⁹⁷Ru ε decay data set.

- & From 1984Ad06, reanalysis of measurements of 1979Xe01, 1982Ka26, and others.
- ^{*a*} Observed by 1979Xe01, and placed in the level scheme proposed by the authors.
- ^b Observed by 1972Pi04.
- ^c Observed by 1982Ka26, and placed in the level scheme proposed by the authors.
- ^d Observed by 1979Xe01 and 1982Ka26 but authors do not agree on placement in the level scheme.
- ^e Deduced from RUL.
- ^f D,E2 deduced from RUL, E1 from level scheme.
- ^g Placement of transition in the level scheme is uncertain.
- $x \gamma$ ray not placed in level scheme.

1979Xe01,1980La07,1982Ka26

⁹⁷**Mo(p,n**γ)

Legend

Level Scheme Intensities: Relative photon branching from each level $--- \rightarrow \gamma$ Decay (Uncertain) $(5/2^+, 7/2^-)$ 2255.0 1.65 2217.4 2208.2 2168.8 (3/2+,5/2,7/2) 2150.1 2069.0 (9/2,11/2) (1/2⁻,3/2,5/2⁻) 2059.9 2036.0 2023.7 10.0 2001.3 1994.9 (3/2) 1987.0 $(9/2^+)$ 1949.4 (7/2) 1940.6 (3/2,5/2) 1924.6 (3/2,5/2) 1914.1 9/2+ 1310.2 7/2+ 969.65 1 (9/2+) $\geq 0.38 \text{ ps}$ 861.58 ¥ ¥ 7/2+ 855.44 $\geq 0.37 \text{ ps}$ ¥ ¥ ¥ 5/2+ 785.08 0.33 ps +17-10 <u>656.90</u> ≥0.76 ps 5/2-3/2-580.17 1 5/2+ 324.46 7/2+ 215.71 $1/2^{-}$ 96.57 <u>9/2</u>+ 0.0

⁹⁷₄₃Tc₅₄

7

⁹⁷**Mo(p,n**γ) 1979Xe01,1980La07,1982Ka26 Legend Level Scheme (continued) Intensities: Relative photon branching from each level $--- \rightarrow \gamma$ Decay (Uncertain) 1641 1640 15308 100 $\frac{(5/2^+, 7/2^+, 9/2^+)}{(9/2^+)}$ 100 43 100 43 1895.9 1864.8 $(3/2^+, 5/2^-)$ -6-0-0--6-0-0-6-0-1856.1 (3/2) Ø. 0.21 ps +22-8 1850.6 $(9/2^+)$ 13-12 1 1815.7 151-1-153-6 153-0 (3/2,5/2,7/2) 1796.7 (5/2,7/2) 1779.1 $\frac{(3/2^+, 5/2, 7/2^-)}{(3/2^+, 5/2, 7/2)}$ $\geq \! 0.54 \ ps$ \$-\$ 1733.3 135-0 135-0 135-0 109-14 1722.4 $\frac{(7/2)}{(3/2^+, 5/2, 7/2)}$ 0.025 ps +9-6 1707.7 Т 1692.9 1677.2 $(9/2^+)$ 1199.50 0.24 ps +37-10 (3/2+) <u>994.65</u> 0.17 ps +7-4 $7/2^{+}$ 969.65 7/2+ 855.44 $\geq 0.37 \text{ ps}$ 832.76 11/2(+) $\geq 0.35 \text{ ps}$ ¥ 5/2+ 785.08 0.33 ps +17-10 ٦ <u>656.90</u> ≥0.76 ps 5/2-3/2-580.17 5/2+ 324.46 7/2+ 215.71 1/2-96.57 9/2+ 0.0

⁹⁷₄₃Tc₅₄

8

⁹⁷**Mo(p,n**γ) 1979Xe01,1980La07,1982Ka26

Level Scheme (continued)

Intensities: Relative photon branching from each level

⁹⁷₄₃Tc₅₄

9

⁹⁷Mo(p,nγ) 1979Xe01,1980La07,1982Ka26

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $\gamma = - - - - \rightarrow \gamma$ Decay (Uncertain)

Legend

⁹⁷₄₃Tc₅₄

⁹⁷Mo(p,nγ) 1979Xe01,1980La07,1982Ka26

Level Scheme (continued)

Intensities: Relative photon branching from each level

