97 Rb β^- decay 1990Lh02

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 111, 525 (2010)	19-Nov-2009

Parent: ⁹⁷Rb: E=0.0; $J^{\pi}=3/2^+$; $T_{1/2}=169.1$ ms 6; $Q(\beta^-)=10432\ 28;\ \%\beta^-$ decay=100.0

⁹⁷Rb-ADOPTED values for ⁹⁷Rb.

1990Lh02: measured $E\gamma$, $I\gamma$, $\gamma\gamma(t)$.

1983Kr11: measured $E\gamma$, $I\gamma$, Ice, $\gamma\gamma$, $\beta\gamma(t)$.

1990Bu01: measured $\beta \gamma \gamma$ (t).

1992Pr03: measured β^- endpoint with achromatic magnetic sector field filter with GE(HP) β^- detector. Other: 1975Gu03.

1990Mo15, 1984Ha58, 1984Kr03, 1984Kr06, 1984Kr07: β -decay strength function calculations. The level scheme is that proposed by 1983Kr11 and modified by 1990Lh02.

⁹⁷Sr Levels

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	Comments
0.0	1/2+	429 ms 5	$\%\beta^{-}=100; \%\beta^{-}n \le 0.05$ T _{1/2} , $\%\beta^{-},\%\beta^{-}n:$ from Adopted Levels.
167.13 8	3/2+	0.22 ns 4	$T_{1/2}$: from 1987Oh05. Other: 15 ns (1983Kr11).
308.13 11	7/2+	170 ns 10	$T_{1/2}$: from 1983Kr11.
522.49 9	3/2+,5/2+		
585.06 ^{&} 9	$(3/2)^+$	≤8 ps	
600.48 9	3/2+,5/2+	≤11 ps	Possibly a 2^+ phonon excitation (1990Bu01).
644.73 ^a 9	$(3/2)^{-}$	7.2 ns 10	$T_{1/2}$: from 1983Kr11.
687.09 [@] 9	5/2+	0.364 ns 20	
713.82 <mark>b</mark> 9	$(5/2)^{-}$	1.27 ns 19	$T_{1/2}$: other: 1.7 ns (1983Kr11).
755.37 15			
768.7 <i>3</i>			
771.50 ^a 13	7/2-		
822.42 ^{&} 15	$(7/2)^+$	0.21 ns 3	
916.44 <i>15</i>			
985.49 <i>13</i>	$(3/2^+, 5/2^+)$	≤6 ps	
1095.50 14	$(3/2^+, 5/2)$		
1320.70 14		$\leq 7 \text{ ps}$	
13/4.6/ 16	(1/2+2/2,5/2+)	≤6 ps	
1507.5 3	$(1/2^+, 3/2, 5/2^+)$		
2834.9 4			

 † From least squares fit to Ey.

[‡] From ⁹⁷Sr Adopted Levels.

[#] From 1990Bu01, except where otherwise noted.

[@] Band(A): Band based on $5/2^+$, $\alpha = +1/2$.

& Band(a): Band based on $3/2^+$, $\alpha = -1/2$.

^{*a*} Band(B): Band based on $3/2^{-}$, $\alpha = -1/2$.

^b Band(b): Band based on $5/2^-$, $\alpha = +1/2$.

97 Rb β^- decay 1990Lh02 (continued)

β^{-} radiations

E(decay)	E(level)	Iβ ^{-†@}	Log ft	Comments
$(7.58 \times 10^3 \ 3)$	2854.9	0.84 17	6.25 9	av E β =3469 14
$(8.92 \times 10^3 \ 3)$	1507.3	1.53 25	6.32 8	av E β =4118 14
$(9.06 \times 10^3 \ 3)$	1374.67	3.5 5	5.99 7	av E β =4182 14
$(9.11 \times 10^3 \ 3)$	1320.70	4.3 <i>3</i>	5.91 <i>3</i>	av E β =4208 14
$(9.34 \times 10^3 \ 3)$	1095.50	2.7 3	6.16 5	av Eβ=4316 14
$(9.45 \times 10^3 \ 3)$	985.49	6.5 6	5.80 4	av E β =4369 14
$(9.52 \times 10^3 \ 3)$	916.44	0.97 22	6.64 10	av E β =4402 14
(9.61×10 ³ <i>& 3</i>)	822.42	0.40 [‡] 8	7.05 [‡] 9	av Eβ=4447 <i>14</i>
(9.66×10 ³ <i>& 3</i>)	771.50	0.69 [‡] 11	6.82 [‡] 7	av Eβ=4472 <i>14</i>
$(9.66 \times 10^3 \ 3)$	768.7	0.16 [#] 6	7.46 [#] 17	av Eβ=4473 <i>14</i>
$(9.68 \times 10^3 \ 3)$	755.37	0.47 10	6.99 10	av Eβ=4480 14
$(9.72 \times 10^3 \ 3)$	713.82	3.1 4	6.18 6	av Eβ=4500 14
$(9.74 \times 10^3 \ 3)$	687.09	12.8 11	5.57 4	av Eβ=4512 14
$(9.79 \times 10^3 \ 3)$	644.73	7.0 6	5.84 4	av Eβ=4533 14
$(9.83 \times 10^3 \ 3)$	600.48	7.2 7	5.84 5	av Eβ=4554 14
$(9.85 \times 10^3 \ 3)$	585.06	14.7 12	5.53 4	av Eβ=4561 14
$(9.91 \times 10^3 \ 3)$	522.49	1.7 4	6.48 11	av Eβ=4591 14
$(1.012 \times 10^4 \& 3)$	308.13	$1.0^{\ddagger} 4$	6.75 [‡] 18	av Eβ=4694 14
$(1.026 \times 10^4 \ 3)$	167.13	2.0 8	6.48 18	av Eβ=4762 14
$(1.043 \times 10^4 \ 3)$	0.0	33	6.3 5	av E β =4842 14
				E(decay): 10462 47 (1992Pr03); 10450 30 (1984BIZN).

[†] Calculated from intensity balance on the proposed level scheme. The intensity of the ground-state β group was deduced by 1983Kr11 from a filiation measurement assuming the absolute intensity of I(743 γ ⁹⁷Nb)=0.928 and $\beta\beta$ ^{-n=25.2.} (correcting for the adopted I γ (0.9306 *15*) and $\beta\beta$ ^{-n=25.9}) does not alter the deduced I β (g.s.).).

[‡] The log *ft* value is in disagreement with the spin assignment. The log *ft* value suggests J=1/2, 3/2, 5/2. However, since the β group is weak, the available decay energy is high (suggesting possible unknown higher levels), and there is enough intensity in unplaced gammas which might feed this level, the β^- group can be considered questionable.

[#] I β =1.21 18, log ft=6.58 7 if placement of 768.7 γ to this level is confirmed.

[@] Absolute intensity per 100 decays.

[&] Existence of this branch is questionable.

 $\gamma(^{97}{\rm Sr})$

I γ normalization: based on intensity balance at ⁹⁷Sr g.s. with % β ⁻n=25.5 9 (Adopted Levels for ⁹⁷Sr) and I(g.s. β ⁻)=3 3% (from 1983Kr11). Total unplaced I γ =5.4% (strongest unplaced γ has I γ =0.60 11%).

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger @}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	δ	α &	Comments
^x 40.7 <i>1</i> 42.4 <i>1</i>	3 <i>1</i> 2 <i>1</i>	687.09	5/2+	644.73	(3/2)-	[E1]		1.231 20	$\alpha(K)=1.081\ 17;\ \alpha(L)=0.1262\ 20;\ \alpha(M)=0.0209\ 4;$
		< - 2	(2) (2) -	600.40		-			α (N+)=0.00263 4 α (N)=0.00250 4; α (O)=0.0001325 21
44.3 1	28 3	644.73	(3/2)-	600.48	3/2+,5/2+	(E1)		1.086 17	$\alpha(K)=0.955\ 15;\ \alpha(L)=0.1109\ 18;\ \alpha(M)=0.0184\ 3;$ $\alpha(N+)=0.00232\ 4$ $\alpha(N)=0.00220\ 4;\ \alpha(O)=0.0001177\ 18$
									Mult.: from $\alpha(\exp)=0.98\ 50$, $\alpha(K)\exp=0.61\ 33\ (1990Lh02)$.
57.7 1	10 1	771.50	7/2-	713.82	(5/2)-	M1+E2#	0.26# +9-12	1.2 3	$\alpha(K)=1.00\ 24;\ \alpha(L)=0.16\ 7;\ \alpha(M)=0.027\ 11;\ \alpha(N+)=0.0033\ 12$
59.7 1	96 6	644.73	(3/2)-	585.06	$(3/2)^+$	(E1)		0.460	$\alpha(N)=0.0052\ 12,\ \alpha(O)=0.00014\ 5$ $\alpha(K)=0.405\ 6;\ \alpha(L)=0.0460\ 7;\ \alpha(M)=0.00764\ 12;$ $\alpha(N+)=0.000976\ 15$
									α (N)=0.000924 <i>14</i> ; α (O)=5.18×10 ⁻⁵ 8 Mult.: from α (exp)=0.43 <i>18</i> , α (K)exp=0.24 <i>17</i> (1990Lh02);
62.5 2	1 <i>I</i>	585.06	$(3/2)^+$	522.49	3/2+,5/2+	[M1,E2]		3 3	α (K)exp=0.50 <i>15</i> (1983Kr11). α (K)=2.5 <i>20</i> ; α (L)=0.5 <i>5</i> ; α (M)=0.09 <i>8</i> ; α (N+)=0.010 <i>9</i>
69.1 <i>1</i>	67 <i>3</i>	713.82	(5/2)-	644.73	(3/2)-	M1+E2	0.19 +6-7	0.58 9	α (N)=0.010 9; α (O)=0.00031 23 α (K)=0.50 7; α (L)=0.067 15; α (M)=0.0114 25;
									$\alpha(N+)=0.0014 \ 3$ $\alpha(N)=0.0014 \ 3$; $\alpha(O)=7.3\times10^{-5} \ 8$
									Mult., δ : from α (K)exp=0.50 δ (weighted average of α (K)exp=0.52 k_2 and 0.52 k_2 (1000) h02) and
									$\alpha(K)\exp=0.55$ 15 and 0.55 12 (1990Ln02) and $\alpha(K)\exp=0.48$ 8 (1983Kr11)).
78.0 2	11	600.48	3/2+,5/2+	522.49	3/2+,5/2+	[M1,E2]		1.4 11	$\alpha(K)=1.2 \ 9; \ \alpha(L)=0.21 \ 18; \ \alpha(M)=0.04 \ 3; \ \alpha(N+)=0.004 \ 4 \ \alpha(N)=0.004 \ 4; \ \alpha(O)=0.00015 \ 11$
86.6 1	15 2	687.09	5/2+	600.48	3/2+,5/2+	[M1,E2]		1.0 8	$\alpha(K)=0.8\ 6;\ \alpha(L)=0.14\ 12;\ \alpha(M)=0.023\ 19;\ \alpha(N+)=0.0028$
102.0 <i>1</i>	98 4	687.09	5/2+	585.06	$(3/2)^+$	M1+E2	0.43 12	0.28 6	$\alpha(N)=0.002722; \alpha(O)=0.000118$ $\alpha(K)=0.245; \alpha(L)=0.0339; \alpha(M)=0.005615;$ $\alpha(N+)=0.0007017$
									$\alpha(N)=0.00066\ 17;\ \alpha(O)=3.3\times10^{-5}\ 7$
113.3 <i>I</i>	15 2	713.82	(5/2)-	600.48	3/2+,5/2+	[E1]		0.0703	Mult., δ : from α (K)exp=0.24 5 (1983Kr11). α (K)=0.0622 9; α (L)=0.00686 10; α (M)=0.001143 17; α (N+)=0.0001492 22
122.2 2	14 5	644.73	(3/2)-	522.49	3/2+,5/2+	[E1]		0.0563	α (N)=0.0001407 20; α (O)=8.46×10 ⁻⁶ 12 α (K)=0.0498 8; α (L)=0.00548 9; α (M)=0.000914 14;

 $\boldsymbol{\omega}$

⁹⁷₃₈Sr₅₉-3

1						97 Rb β^- d	lecay	1990Lh02 (c	continued)	97S
							γ (⁹⁷ S	br) (continued)		r ₅₉ -4
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger @}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. [‡]	α &	Comments		
									α (N+)=0.0001195 <i>18</i> α (N)=0.0001127 <i>17</i> ; α (O)=6.81×10 ⁻⁶ <i>10</i>	
126.7 2	3 1	771.50	7/2-	644.73 (3	3/2)-	E2 [#]		0.427	$\alpha(K)=0.364\ 6;\ \alpha(L)=0.0531\ 9;\ \alpha(M)=0.00893\ 14;\ \alpha(N+)=0.001096\ 17$	
128.8 <i>1</i>	28 4	713.82	(5/2)-	585.06 (3	3/2)+	(E1)		0.0482	$ \alpha(N) = 0.001048 \ I6; \ \alpha(O) = 4.77 \times 10^{-5} \ 8 \\ \alpha(K) = 0.0426 \ 6; \ \alpha(L) = 0.00469 \ 7; \ \alpha(M) = 0.000782 \ 11; \ \alpha(N+) = 0.0001024 \\ I5 $	
									α (N)=9.65×10 ⁻⁵ <i>14</i> ; α (O)=5.86×10 ⁻⁶ <i>9</i> Mult.: from α (K)exp=0.04 <i>2</i> (1983Kr11).	
135.4 2	6 1	822.42	$(7/2)^+$	687.09 5	/2+	[M1+E2]		0.20 14	$\alpha(K)=0.17\ 12;\ \alpha(L)=0.024\ 17;\ \alpha(M)=0.004\ 3;\ \alpha(N+)=0.0005\ 4$	
141.0 <i>I</i>	100 8	308.13	7/2+	167.13 3,	/2+	E2		0.288	$\alpha(N)=0.00054, \alpha(O)=2.4\times10^{-1.5}$ $\alpha(K)=0.2474; \alpha(L)=0.03475; \alpha(M)=0.005849; \alpha(N+)=0.00072211$ $\alpha(N)=0.00069010; \alpha(O)=3.28\times10^{-5}5$	
164.6.1	45.5	(07.00	5/2+	500 40 0	12+ 512+	2.61		0.0401	Mult.: from α (K)exp=0.24 4 (1983Kr11).	
164.6 <i>1</i>	45 5	687.09	5/21	522.49 3	/2',5/2'	MI		0.0421	$\alpha(K)=0.03716; \alpha(L)=0.004186; \alpha(M)=0.00070470; \alpha(N+)=9.38\times10^{-5}$ 14	
									$\alpha(N)=8.81\times10^{-5}$ 13; $\alpha(O)=5.65\times10^{-6}$ 8 Mult - from $\alpha(K)$ ave = 0.026.7 (1082K r 11)	Fre
167.1 <i>1</i>	1000	167.13	3/2+	0.0 1/	/2+	M1		0.0404	$\%$ I γ =26.3 12	om H
									α (K)=0.0356 5; α (L)=0.00402 6; α (M)=0.000676 10; α (N+)=9.01×10 ⁻⁵ 13	ENSD
									$\alpha(N)=8.46\times10^{-5}$ 12; $\alpha(O)=5.43\times10^{-6}$ 8 %Iv: using the calculated normalization	Ť
									Mult.: from α (K)exp=0.035 2 (1983Kr11).	
214.3 2	41	522.49	3/2+,5/2+	308.13 7	/2 ⁺ /2 ⁺					
229.07	5 Z 4 I	910.44 755.37		522.49 3	/2 /2+.5/2+					
237.3 2	10 2	822.42	$(7/2)^+$	585.06 (3	$(3/2)^+$					
271.7 7	21	985.49	$(3/2^+, 5/2^+)$	713.82 (5	5/2)-					
273.1 2	2 1	1095.50	$(3/2^+, 5/2)$	822.42 (7	7/2)+					
298.4 2	10 2	985.49	$(3/2^+, 5/2^+)$	687.09 5	/2+					
315.5 3	31	916.44		600.48 3	/2+,5/2+					
331.3 3	41	916.44		585.06 (3	3/2)+					
355.3 2	105 8	522.49	3/2+,5/2+	167.13 3,	/2+	M1		0.00593	$\begin{array}{l} \alpha(\mathrm{K}) = 0.00524 \ 8; \ \alpha(\mathrm{L}) = 0.000578 \ 9; \ \alpha(\mathrm{M}) = 9.72 \times 10^{-3} \ 14; \\ \alpha(\mathrm{N}+) = 1.299 \times 10^{-5} \ 19 \end{array}$	
									$\alpha(N)=1.220\times10^{-5}$ 18; $\alpha(O)=7.93\times10^{-7}$ 12 Mult : from $\alpha(K)\exp=0.0058$ 10 (1983K+11)	
379.0 2	57 4	687.09	5/2+	308.13 7,	/2+	(M1)		0.00507	$\alpha(K) = 0.00448 \ 7; \ \alpha(L) = 0.000493 \ 7; \ \alpha(M) = 8.29 \times 10^{-5} \ 12; \ \alpha(N+) = 1.109 \times 10^{-5} \ 16$	
									$\alpha(\mathbf{N}) = 1.041 \times 10^{-5} IS; \alpha(\mathbf{O}) = 0.78 \times 10^{-5} IU$ Mult : from $\alpha(\mathbf{K}) \exp(0.0035 IS; (1983 \mathrm{Kr} 11))$	
382.4 10	32	1095.50	(3/2+,5/2)	713.82 (5	5/2)-					38 ⁹⁷ S
^x 383.2 3	62									°r ₅₉
										4

4

					⁹⁷ Rb	β^- decay	1990Lh02	(continued)		
γ ⁽⁹⁷ Sr) (continued)										
E_{γ}^{\dagger}	$I_{\gamma}^{\dagger @}$	E _i (level)	${ m J}^{\pi}_i$	\mathbf{E}_{f}	J_f^π	Mult. [‡]	α &	Comments		
385.3 <i>3</i> 389.3 <i>3</i> 394.1 <i>3</i>	17 <i>3</i> 8 2 15 2	985.49 1374.67 916.44	(3/2+,5/2+)	600.48 985.49 522.49	$3/2^+, 5/2^+$ $(3/2^+, 5/2^+)$ $3/2^+, 5/2^+$					
400.4 2	60 4	985.49	(3/2+,5/2+)	585.06	(3/2)+	(M1)	0.00444	$\alpha(K)=0.00393\ 6;\ \alpha(L)=0.000432\ 6;\ \alpha(M)=7.25\times10^{-5}\ 11;\ \alpha(N+)=9.70\times10^{-6}\ 14\ \alpha(N)=9.11\times10^{-6}\ 13;\ \alpha(O)=5.93\times10^{-7}\ 9\ Mult.;\ from\ \alpha(K)=0.0045\ 20.$		
405.8 2 408 4 3	92 185	713.82	$(5/2)^{-}$ $(3/2^{+} 5/2)$	308.13 687.09	7/2 ⁺ 5/2 ⁺					
417.9 2	226 14	585.06	$(3/2)^+$	167.13	3/2+	M1,E2	0.0052 12	$\alpha(K)=0.0046 \ 11; \ \alpha(L)=0.00052 \ 13; \ \alpha(M)=8.7\times10^{-5} \ 22; \ \alpha(N+)=1.2\times10^{-5} \ 3 \ \alpha(N)=1.1\times10^{-5} \ 3; \ \alpha(O)=6.7\times10^{-7} \ 14 \ Mult.: \ from \ \alpha(K)exp=0.0045 \ 10 \ (1983Kr11); \ theory: \ \alpha(K)(M1)=0.00355 \ \alpha(K)(E2)=0.00564.$		
433.4 2	98 6	600.48	3/2+,5/2+	167.13	3/2+	M1,E2	0.0047 11	$\alpha(K)=0.0041 \ 9; \ \alpha(L)=0.00047 \ 11; \ \alpha(M)=7.8\times10^{-5} \ 19; \alpha(N+)=1.04\times10^{-5} \ 24 \alpha(N)=9.8\times10^{-6} \ 23; \ \alpha(O)=6.1\times10^{-7} \ 12 Mult.: from \ \alpha(K)exp=0.0048 \ 15 \ (1983Kr11); theory: \alpha(K)(M1)=0 \ 00325 \ \alpha(K)(F2)=0 \ 00503$		
477.5 2 495.1 2 510.3 4	36 5 40 <i>3</i> 12 <i>4</i>	644.73 1095.50 1095.50	$(3/2)^{-}$ $(3/2^{+}, 5/2)$ $(3/2^{+}, 5/2)$	167.13 600.48 585.06	$3/2^+$ $3/2^+, 5/2^+$ $(3/2)^+$					
520.0 2	241 12	687.09	5/2+	167.13	3/2+	(M1)	0.00239	$\alpha(K)=0.00212 \ 3; \ \alpha(L)=0.000231 \ 4; \ \alpha(M)=3.89\times10^{-5} \ 6; \\ \alpha(N+)=5.20\times10^{-6} \ 8 \\ \alpha(N)=4.88\times10^{-6} \ 7; \ \alpha(O)=3.19\times10^{-7} \ 5 \\ \text{Mult} \ \text{from } \alpha(K)=0.0020 \ 15 \ (1983Kr11) $		
522.5 3	48 6	522.49	3/2+,5/2+	0.0	1/2+			% $I_{Y}=1.26 I7$ % $I_{Y}=1.26 I7$		
546.5 <i>3</i> 565.3 <i>3</i> 573 0 <i>3</i>	5 <i>1</i> 9 2 6 <i>1</i>	713.82 1320.70 1095.50	$(5/2)^{-}$ $(3/2^{+} 5/2)$	167.13 755.37 522.49	3/2+ 3/2+ 5/2+			7017. Using the calculated normalization.		
585.2 2	809 26	585.06	$(3/2, 3/2)^+$	0.0	1/2 ⁺ ,)/2	M1,E2	0.00207 25	%Iγ=21.2 11 $\alpha(K)=0.00183$ 22; $\alpha(L)=0.00020$ 3; $\alpha(M)=3.4\times10^{-5}$ 5; $\alpha(N+)=4.5\times10^{-6}$ 6 $\alpha(N)=4.2\times10^{-6}$ 6; $\alpha(O)=2.7\times10^{-7}$ 3 %Iγ: using the calculated normalization. Mult.: from $\alpha(K)\exp=0.0016$ 5 (1983Kr11); theory: $\alpha(K)(M1)=0.00162$, $\alpha(K)(E2)=0.00204$.		
588.3 2 591 0 4	23 <i>3</i> 16 6	755.37 1507 3	$(1/2^+, 3/2, 5/2^+)$	167.13 916 44	3/2+					
600.5 2	409 14	600.48	3/2+,5/2+	0.0	$1/2^{+}$	E2,M1	0.00193 22	%Iy=10.7 6		

S

 $^{97}_{38}\mathrm{Sr}_{59}$ -5

L

					97 Rb β^{-}	decay 1990Lh02 (continued)
						$\gamma(^{97}\mathrm{Sr})$ (continued)
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger @}$	E _i (level)	${ m J}^{\pi}_i$	E_f	J_f^π	Comments
(01.6.2	()	769.7		167.12	2/0+	$\begin{aligned} &\alpha(K) = 0.00171 \ 19; \ \alpha(L) = 0.000189 \ 24; \ \alpha(M) = 3.2 \times 10^{-5} \ 4; \ \alpha(N+) = 4.2 \times 10^{-6} \ 5 \\ &\alpha(N) = 4.0 \times 10^{-6} \ 5; \ \alpha(O) = 2.53 \times 10^{-7} \ 25 \\ &\% Iy: \text{ using the calculated normalization.} \\ &Mult.: \text{ from } \alpha(K) \exp = 0.0021 \ 8 \ (1983 \text{ Kr11}); \text{ theory: } \alpha(K) (E2) = 0.00190, \ \alpha(K) (M1) = 0.00152. \end{aligned}$
601.6 3 644.6 2	6 2 132 5	644.73	(3/2) ⁻	0.0	$\frac{3}{2^{+}}$ $\frac{1}{2^{+}}$	%I γ =3.47 21 %I γ : using the calculated normalization.
660.5 4	19 <i>3</i>	1374.67		713.82	(5/2)-	, ,
687.1 <i>3</i>	110 20	687.09	5/2+	0.0	$1/2^{+}$	$\%$ I γ =2.9 6 $\%$ Let using the calculated normalization
687.7 2	75 15	1374.67		687.09	5/2+	vory. Using the calculated normalization.
720.3 2	60.3	1320.70		600.48	$3/2^+.5/2^+$	
735.6 2	714	1320.70		585.06	$(3/2)^+$	
749.4 3	22 4	916.44		167.13	$3/2^+$	
768.7 ^a 4	40 6	768.7		0.0	$1/2^+$	
787.0 4	20 4	1095.50	$(3/2^+, 5/2)$	308.13	7/2+	
789.7 4	31 6	1374.67		585.06	$(3/2)^+$	
818.5 5	55 15	985.49	$(3/2^+, 5/2^+)$	167.13	$3/2^{+}$	
820.0 5	14 4	1507.3	$(1/2^+, 3/2, 5/2^+)$	687.09	$5/2^{+}$	
^x 829.5 4	12 3					
^x 872.2 4	92					
917.0 4	62	916.44		0.0	$1/2^{+}$	%Ιγ=0.16 6
985.3 <i>3</i>	110 9	985.49	(3/2 ⁺ ,5/2 ⁺)	0.0	1/2+	%1 γ : using the calculated normalization. %1 γ =2.9 3 %1 γ : using the calculated normalization.
^x 1013.9 3	8 2					, .
^x 1053.0 3	23 4					
1207.0 4	15 <i>3</i>	1374.67		167.13	3/2+	
^x 1242.0 4	12 4					
1320.8 4	28 4	1320.70		0.0	1/2+	$\%$ I γ =0.74 <i>11</i> %I γ : using the calculated normalization.
×1375.7 4	20 4					
*1423.2 5	72	0054.0		1054 (5		
1480.0 5	14 4	2854.9	(1/2 + 2/2 + 2/2 + 1)	13/4.67	1/2+	0/ L. 0.74.14
1507.3 5	28.5	1507.3	(1/2, 3/2, 5/2)	0.0	1/2*	$\%_1\gamma=0./4$ 14 $\%_1\gamma$: using the calculated normalization.
1535.5 8 X1579 4 5	42	2854.9		1320.70		
x1628 4 5	5 Z 7 2					
x1667.5.5	11 2					
x1846 3 5	15 3					
x2037.3 5	93					

6

From ENSDF

 $^{97}_{38}\mathrm{Sr}_{59}$ -6

L

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger @}$	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$
2254.0 6	14 4	2854.9		600.48	3/2+,5/2+
^x 2646.0 15	9 <i>3</i>				
^x 2718.5 15	73				
^x 2800.0 15	11 3				
x2840.0 15	52				
^x 2900.0 15	20 5				

[†] From 1990Lh02.

[‡] Deduced from $\alpha(\exp)$ and $\alpha(K)\exp$ (measured intensity balance and I(K x ray)/I γ , respectively, in coincidence spectra) (1990Lh02); and from I(ce)/I γ from simultaneously recorded spectra, using transitions of known multipolarity of α =96 to 98 isotopes for internal calibration (1983Kr11). Some mult. and δ values, noted In table, are from Adopted Gammas.

From Adopted Gammas.

[@] For absolute intensity per 100 decays, multiply by 0.0263 *12*.

[&] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^{*a*} Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

⁹⁷Rb β^- decay 1990Lh02

Decay Scheme

 $^{97}_{38}{
m Sr}_{59}$

8

97 Rb β^- decay 1990Lh02

1990Lh02

 97 Rb β^- decay

⁹⁷₃₈Sr₅₉