		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 111,525 (2010)	19-Nov-2009

 $Q(\beta^{-})=7545 8$; S(n)=3724 10; S(p)=14517 5; $Q(\alpha)=-6871 5 2012Wa38$

Note: Current evaluation has used the following Q record \$ 7470 16 3920 30 14850 30 -720E1 10 2003Au03.

 $Q(\beta^{-}n)=1487\ 29\ (2003Au03)$; see also preliminary Penning-trap mass measurements, 2006Ha23 (97 Sr, 96 Sr), 2007Ra23 (97 Rb, 96 Rb), 2007Ha32 (97 Y, 96 Y), and 2006De36 (93 Kr) from which the following values are calculated: $Q(\beta^{-})=7538\ 13$; S(n)=3732

14; S(p)=14521 10, $Q(\alpha)=-6875.9$ 10, $Q(\beta^{-}n)=1683$ 12.

97Sr Levels

Cross Reference (XREF) Flags

Α	97 Rb β^- decay	D	²⁵² Cf SF decay
В	98 Rb β^- n decay (114 ms)	Ε	238 U(α ,F γ) E=30 MeV
С	²⁴⁸ Cm SF decay	F	239 Pu(n,F γ) E=th

Theory, calculations and systematics: mean square charge radii: 1996Li25, 1993HiZX, 1992Ne09, 1990Bu12 calculated binding energy per particle, isotope shifts: 1993Hi11 deformation, shape coexistence: 1993LhZY, 1990Bu01, 1988Lh01, 1985Me20

interacting bosons calculations: 1988BrZM

E(level) [†]	\mathbf{J}^{π}	T _{1/2} ‡	XREF	Comments
0.0	1/2+	429 ms 5	ABCDEF	 %β⁻=100; %β⁻n≤0.05 μ=-0.4983 9 (1990Li28) J^π: J=1/2 collinear fast beam LASER spectroscopy (1987Bu11, 1990Li28,1990Bu12); π=+ from shell model: 3s1/2 is the only available low-energy J=1/2 level for N=59 nucleus.
				T _{1/2} : weighted average of 420 20 ms (1987PfZX), 429 5 ms (1986Wa17), 420 40 ms (1982Ga24), 390 30 ms (1981En05), 441 15 ms (1978Wo09). Others: 403 5 ms (1983Re10, earlier report by 1986Wa17), 430 30 ms (1979En02, earlier report by 1981En05), 850 50 ms (1971Tr02), ≈400 ms (1970Ei02).
				 %β⁻n: recommended value (1993Ru01); 0.03 2 (1987PfZX), <0.05 (1986Wa17), <0.02 (1983Re10), 0.005 2 (1982Ga24), 0.27 9 (1981En05). μ: measured by collinear fast beam LASER spectroscopy – accelerated
1(7.12.0	2/2+	0.00		beam. Others: $-0.498\ 2\ (2005\text{St}24, 1990\text{Bu}12),\ -0.500\ I\ (1989\text{Ra}17).$
167.13 8	3/2+	0.22 ns 4	ABCDEF	J ^{<i>n</i>} : $\Delta J=1$, MI γ to $1/2^+$ g.s.
308.13 <i>11</i>	7/2+	169 ns 9	ABCDEF	J^{π} : ΔJ =2, E2 γ to 3/2 ⁺ ; configuration=g7/2. T _{1/2} : weighted average of 170 ns <i>10</i> (⁹⁷ Rb β^- decay) and 165 ns 25
		.#		$(^{232}$ Cf SF decay).
312.03 22	2/2+ 5/2+	<4 [#] ns	D	$T_{1/2}$: from ²³² Cf SF decay.
522.499	$\frac{3}{2}, \frac{3}{2}, \frac{3}{2}$	< 9 no	AC	J [*] : M1 γ from 5/2 ⁺ , 687 and M1 γ to 3/2 ⁺ , 167.
383.00 9	(3/2)	≤o ps	ACE	positive parity hand with E2 Λ I=2 237 5 γ and higher Ω Λ I=2 γ 's
600.48 9	3/2+,5/2+	≤11 ps	AC	J^{π} : M1,E2 γ to 3/2 ⁺ , 167; E2,M1 γ to 1/2 ⁺ , g.s.
644.73 ^b 9	(3/2)-	7.2 ns 10	ACE	J^{π} : $(3/2)^{-}, (5/2)^{-}, (7/2)^{-}$ from M1+E2 γ from $(5/2)^{-}, 714$; $(3/2)^{-}$ from γ to $1/2^{+}$, g.s.; band head of negative parity band with M1+E2 ΔJ =1 stopover 57.7 γ and cascade of Q, ΔJ =2 crossover γ 's.
687.09 ^{&} 9	5/2+	0.364 ns 20	ACE	$\beta_2 = 0.34 \ 2$

Continued on next page (footnotes at end of table)

97Sr Levels (continued)

E(level) [†]	J^{π}	T _{1/2} ‡	XREF	Comments
				J ^π : $\Delta J=2$, E2 γ to 1/2 ⁺ , g.s.; band head of positive parity band with M1+E2 $\Delta J=1$ stopover 102.0γ and cascade of Q, $\Delta J=2$ crossover γ's. β_2 : from ²⁴⁸ Cm SF.
713.82 [°] 9	(5/2)-	1.27 ns <i>19</i>	ACE	$J^{\overline{\tau}}$: $(1/2)^-, (3/2)^-, (5/2)^-$ from E1 γ to $(3/2)^+, 585; (5/2)^-$ from no γ to $1/2^+$, g.s.; band head of negative parity band with M1+E2 $\Delta J=1$ stopover 69.1 γ and signature partner of band based on $(3/2)^-, \alpha = -1/2$.
755.37 <i>15</i> 768.7 <i>3</i>			A A	
771.48 ^b 12	7/2-		АСЕ	$\beta_2=0.32$ 2 $J^{\pi}: 3/2^-, 5/2^-, 7/2^-$ from E1 γ to $5/2^+$, 687; 7/2 ⁻ from $\Delta J=2$, Q in-band γ to $(3/2)^-$, 645. $\beta_2:$ from ²⁴⁸ Cm SE
822.42 ^{<i>a</i>} 15	$(7/2)^+$	0.21 ns 3	ACE	J^{π} : $\Delta J=2$, E2 γ to $(3/2)^+$, 585; parity from member of band based on $3/2^+$, $\alpha = -1/2$.
830.83 ^d 23	(9/2+)	395 ns <i>132</i>	CDEF	β_2 =0.441 <i>13</i> J^{π} : based on analogy with 9/2[404], 1038.8 isomeric level in ⁹⁹ Zr (2003Ur01) as adopted in ²³⁸ U(α ,F γ), ²⁴⁸ Cm SF, and ²⁵² Cf SF datasets; previously (11/2 ⁻) was suggested by 1980MoZJ (²⁵² Cf SF) on the basis of systematics with N=57 and N=59 nuclei. T _{1/2} : mean value of 263 ns 24 (²⁵² Cf SF) and 526 ns <i>13</i> (²³⁹ Pu(n,F γ) E=th, 2005Z101) with an uncertainty which covers both values. These values are strongly discrepant and remeasurement is needed. The value
				from ²⁵² Cf SF is the weighted average of 265 ns 27 (2003Hw03) and 255 ns 56 (2006Hw01). Others (same dataset): 515 ns 15 (1980MoZJ – 2003 correction suggests 255 ns 10); 382 ns 11 (1974Su04 – it does not seem certain the measured 522.4 γ pertains to ⁹⁷ Sr). The 515 ns 15 (1980MoZJ) corrected to 255 ns 10 (2003) might suggest that the 2003Hw03, 2006Hw01 results (same group) from ²⁵² Cf SF (w. aver. 263 ns 24) are correct; however some authors of 1980MoZJ (and 2003 correction) and 2005Zl01 are common, which might suggest that the result of 2005Zl01 (526 ns 13) from ²³⁹ Pu(n,F γ) is correct (see also corresponding comments in ²⁵² Cf SF and ²³⁹ Pu(n,F γ) E=th datasets). β_2 : weighted average of 0.441 15 (²⁵² Cf SF) and 0.441 26 (²⁴⁸ Cm SF).
916.44 <i>15</i> 946.56 ^c 22	(9/2 ⁻)		A CE	J^{π} : γ from 11/2 ⁻ , 995 and γ to (5/2) ⁻ , 771; member of band based on
985.49 <i>13</i>	$(3/2^+, 5/2^+)$	≤6 ps	Α	$5/2^-, \alpha = +1/2.$ J ^{π} : (M1) γ to $(3/2)^+, 585$ and γ to $(5/2)^-, 714.$
992.4 ^{&} 4	9/2+		CE	J ^{π} : Δ J=2, Q γ to 5/2 ⁺ , 687; parity from member of band based on 5/2 ⁺ , α =+1/2.
995.2 ^b 3	11/2-		CE	J ^{π} : Δ J=2, Q γ to 7/2 ⁻ , 771; parity from member of band based on 3/2 ⁻ , $\alpha = -1/2$.
1036.73 ^d 24	$(11/2^+)^{@}$		CDEF	
1095.50 <i>14</i> 1197.9 ^{<i>a</i>} 4	$(3/2^+, 5/2)$ $(11/2)^+$		A C E	J [*] : (3/2 ⁺ , 5/2, 7/2 ⁺) from γ s to (3/2) ⁺ , 586 and (7/2) ⁺ , 822; (7/2) excluded from log <i>fi</i> =6.2 from 3/2 ⁺ g.s. of ⁹⁷ Rb. J ^π : ΔJ=2, Q γ to (7/2) ⁺ , 822; parity from member of band based on
1276.34 ^d 24	(13/2 ⁺) [@]		CDEF C	$3/2^{+}, \alpha = -1/2.$
1320.70 14	(10)	\leq 7 ps	A	
1342.6° <i>11</i> 1374.67 <i>16</i>	(13/2 ⁻)	≤6 ps	E A	J ^{<i>n</i>} : γ to (9/2 ⁻), 946; member of band based on 5/2 ⁻ , α =+1/2.

Continued on next page (footnotes at end of table)

⁹⁷Sr Levels (continued)

E(level) [†]	J^{π}	XREF	Comments
1383.6 ^b 4	15/2-	CE	J^{π} : $\Delta J=2$, E2 γ to 11/2 ⁻ , 995; parity from member of band based on 3/2 ⁻ , $\alpha = -1/2$.
1435.3 ^{&} 5	$13/2^{+}$	СE	J ^{π} : Δ J=2, Q γ to 9/2 ⁺ , 992; parity from member of band based on 5/2 ⁺ , α =+1/2.
1507.3 <i>3</i>	$(1/2^+, 3/2, 5/2^+)$	Α	J^{π} : γ to $5/2^+$, 687 and γ to $1/2^+$, g.s.
1548.83 ^d 25	$(15/2^+)^{@}$	CDEF	
1707.6 ^a 5	$(15/2)^+$	CE	J ^{π} : Δ J=2, Q γ to (11/2) ⁺ , 1198; parity from member of band based on 3/2 ⁺ , α =-1/2.
1852.84 ^{<i>d</i>} 25	$(17/2^+)^{@}$	CDEF	
1903.6 ^c 15	$(17/2^{-})$	Е	J ^{π} : γ to (13/2 ⁻), 1343; member of band based on 5/2 ⁻ , α =+1/2.
1906.4 ^b 5	19/2-	CE	J ^{π} : Δ J=2, Q γ to 15/2 ⁻ , 1383; parity from member of band based on 3/2 ⁻ , α =-1/2.
2010.4 ^{&} 6	17/2+	CE	J ^{π} : Δ J=2, Q γ to 13/2 ⁺ , 1435; parity from member of band based on 5/2 ⁺ , α =+1/2.
2188.4 ^{<i>d</i>} 4	$(19/2^+)^{@}$	СE	
2345.6 ^a 6	$(19/2^+)$	CE	J ^{π} : γ to (15/2) ⁺ , 1708; parity from member of band based on 3/2 ⁺ , $\alpha = -1/2$.
2553.6 ^d 7	$(21/2^+)^{@}$	E	
2559.9 ^b 6	$23/2^{-}$	CE	J ^{π} : Δ J=2, Q γ to 19/2 ⁻ , 1906; parity from member of band based on 3/2 ⁻ , α =-1/2.
2640.6 [°] 18	$(21/2^{-})$	E	J^{π} : γ to (17/2 ⁻), 1904; member of band based on 5/2 ⁻ , $\alpha = +1/2$.
2712.4 ^{&} 6	$(21/2^+)$	CE	J ^{π} : γ to 17/2 ⁺ , 2010; member of band based on 5/2 ⁺ , α =+1/2.
2854.9 4	-	Α	
2948.5 ^d 9	$(23/2^+)^{(a)}$	E	
3102.6 ^{<i>a</i>} 12	$(23/2^+)$	E	J ^{π} : γ to (19/2 ⁺), 2346; member of band based on 3/2 ⁺ , $\alpha = -1/2$.
3333.9 ^b 7	$(27/2^{-})$	CE	J ^{π} : γ to 23/2 ⁻ , 2560; member of band based on 3/2 ⁻ , $\alpha = -1/2$.
3533.4 <mark>&</mark> 12	$(25/2^+)$	Е	J ^{π} : γ to (21/2 ⁺), 2712; member of band based on 5/2 ⁺ , α =+1/2.
3975.6 ^a 16	$(27/2^+)$	E	J^{π} : γ to (23/2 ⁺), 3103; member of band based on 3/2 ⁺ , $\alpha = -1/2$.
4219.9 ^b 12	$(31/2^{-})$	Е	J ^{π} : γ to (27/2 ⁻), 3334; member of band based on 3/2 ⁻ , α =-1/2.
4468.4 <mark>&</mark> 16	$(29/2^+)$	Е	J ^{π} : γ to (25/2 ⁺), 3533; member of band based on 5/2 ⁺ , α =+1/2.
4955.6 ^a 19	$(31/2^+)$	E	J ^{π} : γ to (27/2 ⁺), 3976; member of band based on 3/2 ⁺ , $\alpha = -1/2$.
5210.9 ^b 16	(35/2 ⁻)	E	J ^{π} : γ to (31/2 ⁻), 4220; member of band based on 3/2 ⁻ , $\alpha = -1/2$.
6305.9 ^b 19	(39/2 ⁻)	Е	J ^{π} : γ to (35/2 ⁻), 5211; member of band based on 3/2 ⁻ , $\alpha = -1/2$.

[†] From least-squares fit to $E\gamma$'s assuming $\Delta E\gamma$ =1 keV for γ 's reported with no uncertainty. [‡] From ⁹⁷Rb β^- data set, unless otherwise noted. [#] From ²⁵²Cf SF decay.

^(a) Based on analogy with 9/2[404], 1038.8 isomeric band in ⁹⁹Zr (2003Ur01) as adopted in ²³⁸U(α ,F γ) dataset.

& Band(A): Band based on $5/2^+$, $\alpha = +1/2$.

^{*a*} Band(a): Band based on $(3/2)^+$, $\alpha = -1/2$.

^b Band(B): Band based on $(3/2)^{-}$, $\alpha = -1/2$.

^c Band(b): Band based on $(5/2)^-$, $\alpha = +1/2$.

^d Band(C): $\nu 9/2[404]$ isomer band.

$\gamma(^{97}\mathrm{Sr})$

All data are from ${}^{97}\text{Rb}\,\beta^-$ decay data set, unless otherwise noted. For unplaced γ 's see ${}^{97}\text{Rb}\,\beta^-$ decay dataset. ΔE : assumed by evaluator for γ 's from ${}^{248}\text{Cm}$ SF decay.

4

E_i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. [#]	α^{\dagger} &	Comments
167.13	3/2+	167.1 <i>1</i>	100	0.0	1/2+	M1	0.0404	B(M1)(W.u.)=0.021 4 $\alpha(K)=0.0356 5; \alpha(L)=0.00402 6; \alpha(M)=0.000676 10;$ $\alpha(N+)=9.01\times10^{-5} 13$ $\alpha(N)=8.46\times10^{-5} 12; \alpha(O)=5.43\times10^{-6} 8$ Mult : M1 from ⁹⁷ Bb β^{-1} : A1=1 transition from ²⁴⁸ Cm SE
308.13	7/2+	141.0 <i>1</i>	100	167.13	3/2+	E2	0.288	$\alpha(K)=0.247 \ 4; \ \alpha(L)=0.0347 \ 5; \ \alpha(M)=0.00584 \ 9; \ \alpha(N+)=0.000722 \ 11 \ \alpha(N)=0.000690 \ 10; \ \alpha(O)=3.28\times10^{-5} \ 5 \ B(E2)(W.u.)=1.76 \ 10 \ Mult.; \ \Delta J=2 \ transition \ from \ ^{248}Cm \ SE.$
312.03		144.9 ^a 2	100	167.13	$3/2^{+}$			
522.49	3/2+,5/2+	214.3 2	4 1	308.13	7/2+	[M1,E2]	0.042 21	α (K)=0.037 <i>18</i> ; α (L)=0.0045 <i>25</i> ; α (M)=0.0008 <i>4</i> ; α (N+)=0.00010 <i>5</i> α (N)=9.E-5 <i>5</i> ; α (O)=5.2×10 ⁻⁶ <i>24</i>
		355.3 2	100 8	167.13	3/2+	M1	0.00593 9	$\alpha(K)=0.00524 \ 8; \ \alpha(L)=0.000578 \ 9; \ \alpha(M)=9.72\times10^{-5} \ 14; \ \alpha(N+)=1.299\times10^{-5} \ 19 \ \alpha(N)=1.220\times10^{-5} \ 18; \ \alpha(O)=7.93\times10^{-7} \ 12$
		522.5 3	46 6	0.0	1/2+	[M1,E2]	0.0028 5	$\alpha(\mathbf{K}) = 1.226 \times 10^{-11}, \ \alpha(\mathbf{C}) = 1.53 \times 10^{-112} \times 10^{-112} \times 10^{-5} \ 8;$ $\alpha(\mathbf{K}) = 0.0025 \ 4; \ \alpha(\mathbf{L}) = 0.00027 \ 5; \ \alpha(\mathbf{M}) = 4.6 \times 10^{-5} \ 8;$ $\alpha(\mathbf{N}+) = 6.1 \times 10^{-6} \ 10$
585.06	$(3/2)^+$	62.5 2	0.12 12	522.49	3/2+,5/2+	[M1,E2]	33	$\alpha(N)=5.8\times10^{-6} \ 10; \ \alpha(O)=3.6\times10^{-7} \ 5 \\ \alpha(K)=2.5 \ 20; \ \alpha(L)=0.5 \ 5; \ \alpha(M)=0.09 \ 8; \ \alpha(N+)=0.010 \ 9 \\ \alpha(N)=0.010 \ 9; \ \alpha(O)=0.00031 \ 23$
		417.9 2	28 2	167.13	3/2+	M1,E2	0.0052 12	$\alpha(K) = 0.0046 \ II; \ \alpha(L) = 0.00052 \ I3; \ \alpha(M) = 8.7 \times 10^{-5} \ 22; \\ \alpha(N+) = 1.2 \times 10^{-5} \ 3; \ \alpha(O) = 6.7 \times 10^{-7} \ I4$
		585.2 2	100 3	0.0	1/2+	M1,E2	0.00207 25	$\alpha(K) = 0.00183 \ 22; \ \alpha(L) = 0.00020 \ 3; \ \alpha(M) = 3.4 \times 10^{-5} \ 5; \ \alpha(N+) = 4.5 \times 10^{-6} \ 6 \ \alpha(N) = 4.2 \times 10^{-6} \ 6; \ \alpha(Q) = 2.7 \times 10^{-7} \ 3$
600.48	3/2+,5/2+	78.0 2	0.24 24	522.49	3/2+,5/2+	[M1,E2]	1.4 11	$\alpha(K) = 1.2 \ 9; \ \alpha(L) = 0.21 \ 18; \ \alpha(M) = 0.04 \ 3; \ \alpha(N+) = 0.004 \ 4 \ \alpha(N) = 0.004 \ 4 \ \alpha(O) = 0.00015 \ 11$
		433.4 2	24.0 15	167.13	3/2+	M1,E2	0.0047 11	$\alpha(K) = 0.0041 \ 9; \ \alpha(L) = 0.00047 \ 11; \ \alpha(M) = 7.8 \times 10^{-5} \ 19; \alpha(N+) = 1.04 \times 10^{-5} \ 24 \alpha(N) = 9.8 \times 10^{-6} \ 23; \ \alpha(O) = 6.1 \times 10^{-7} \ 12$
		600.5 2	100 <i>3</i>	0.0	1/2+	E2,M1	0.00193 22	$\alpha(K)=0.00171 \ 19; \ \alpha(L)=0.000189 \ 24; \ \alpha(M)=3.2\times10^{-5} \ 4; \\ \alpha(N+)=4.2\times10^{-6} \ 5 \\ \alpha(N)=4.0\times10^{-6} \ 5; \ \alpha(O)=2.53\times10^{-7} \ 25$

From ENSDF

					Adopt	ed Levels, (<mark>Gammas</mark> (contir	nued)
						$\gamma(^{97}\mathrm{Sr})$	(continued)	
E _i (level)	\mathbf{J}_i^π	Eγ	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	δ	α^{\dagger} &	Comments
644.73	(3/2)-	44.3 1	21.2 23	600.48 3/2+,5/2	+ (E1)		1.086 17	B(E1)(W.u.)= 3.7×10^{-5} 7 α (K)=0.955 15; α (L)=0.1109 18; α (M)=0.0184 3; α (N+)=0.00232 4
		59.7 1	73 5	585.06 (3/2)+	(E1)		0.460	$\begin{aligned} &\alpha(N) = 0.00220 \ 4; \ \alpha(O) = 0.0001177 \ 18 \\ &B(E1)(W.u.) = 5.3 \times 10^{-5} \ 9 \\ &\alpha(K) = 0.405 \ 6; \ \alpha(L) = 0.0460 \ 7; \ \alpha(M) = 0.00764 \ 12; \\ &\alpha(N+) = 0.000976 \ 15 \end{aligned}$
		122.2 2	11 4	522.49 3/2+,5/2	+ [E1]		0.0563	$\begin{aligned} &\alpha(N) = 0.000924 \ 14; \ \alpha(O) = 5.18 \times 10^{-5} \ 8\\ &B(E1)(W.u.) = 9 \times 10^{-7} \ 4\\ &\alpha(K) = 0.0498 \ 8; \ \alpha(L) = 0.00548 \ 9; \ \alpha(M) = 0.000914 \ 14; \\ &\alpha(N+) = 0.0001195 \ 18 \end{aligned}$
		477.5 2	27 4	167.13 3/2+	[E1]		0.001261 18	$\begin{aligned} &\alpha(\mathbf{N}) = 0.0001127 \ 17; \ \alpha(\mathbf{O}) = 6.81 \times 10^{-6} \ 10 \\ &\mathbf{B}(\mathbf{E}1)(\mathbf{W}.\mathbf{u}.) = 3.8 \times 10^{-8} \ 8 \\ &\alpha(\mathbf{K}) = 0.001117 \ 16; \ \alpha(\mathbf{L}) = 0.0001207 \ 17; \ \alpha(\mathbf{M}) = 2.02 \times 10^{-5} \ 3; \\ &\alpha(\mathbf{N}+) = 2.70 \times 10^{-6} \end{aligned}$
		644.6 2	100 4	0.0 1/2+	[E1]		0.000621 9	$\begin{aligned} &\alpha(\mathrm{N}) = 2.53 \times 10^{-6} \ 4; \ \alpha(\mathrm{O}) = 1.632 \times 10^{-7} \ 23 \\ &\mathrm{B(E1)(W.u.)} = 5.7 \times 10^{-8} \ 9} \\ &\alpha(\mathrm{K}) = 0.000550 \ 8; \ \alpha(\mathrm{L}) = 5.92 \times 10^{-5} \ 9; \ \alpha(\mathrm{M}) = 9.93 \times 10^{-6} \ 14; \\ &\alpha(\mathrm{N}+) = 1.326 \times 10^{-6} \ 19 \end{aligned}$
687.09	5/2+	42.4 1	0.8 4	644.73 (3/2)-	[E1]		1.231 20	$\alpha(N)=1.245\times10^{-6} \ 18; \ \alpha(O)=8.08\times10^{-8} \ 12$ B(E1)(W.u.)=3.6×10 ⁻⁵ \ 19 $\alpha(K)=1.081 \ 17; \ \alpha(L)=0.1262 \ 20; \ \alpha(M)=0.0209 \ 4;$ $\alpha(N+)=0.00263 \ 4$
		86.6 1	6.2 8	600.48 3/2+,5/2	+ [M1,E2]		1.0 8	$\alpha(N) = 0.00250 \ 4; \ \alpha(O) = 0.0001325 \ 21 \\ \alpha(K) = 0.86; \ \alpha(L) = 0.14 \ 12; \ \alpha(M) = 0.023 \ 20; \ \alpha(N+) = 0.0028 \ 23 \\ \alpha(N) = 0.0027 \ \alpha(N+) = 0.0028 \ 23 \\ \alpha(N+) = 0.0028 \ \alpha(N+) = 0.0028$
		102.0 <i>1</i>	41 2	585.06 (3/2)+	M1+E2	0.43 12	0.28 6	$\alpha(N)=0.0027 22; \alpha(O)=0.00011 8$ B(M1)(W.u.)=0.0077 11; B(E2)(W.u.)=130 70 $\alpha(K)=0.24 5; \alpha(L)=0.033 9; \alpha(M)=0.0056 15; \alpha(N+)=0.00070$ 17 $\alpha(N)=0.00066 17; \alpha(O)=3.3\times10^{-5} 7$
		164.6 <i>1</i>	19 2	522.49 3/2+,5/2	+ M1		0.0421	$\delta: 0.88 + 61 - 41 \text{ from } {}^{248}\text{Cm SF.} \\ \alpha(\text{K}) = 0.0371 \ 6; \ \alpha(\text{L}) = 0.00418 \ 6; \ \alpha(\text{M}) = 0.000704 \ 10; \\ \alpha(\text{N}+) = 9.38 \times 10^{-5} \ 14 \\ \alpha(\text{N}) = 8.81 \times 10^{-5} \ 13; \ \alpha(\text{O}) = 5.65 \times 10^{-6} \ 8 \\ \end{cases}$
		379.0 2	24 2	308.13 7/2+	(M1)		0.00507 8	B(M1)(W.u.)=0.00101 13 B(M1)(W.u.)=0.000104 12 α (K)=0.00448 7; α (L)=0.000493 7; α (M)=8.29×10 ⁻⁵ 12; α (N+)=1.109×10 ⁻⁵ 16
		520.0 2	100 5	167.13 3/2+	(M1)		0.00239 4	$ \begin{aligned} &\alpha(\mathrm{N}) = 1.041 \times 10^{-5} \ 15; \ \alpha(\mathrm{O}) = 6.78 \times 10^{-7} \ 10 \\ &\alpha(\mathrm{K}) = 0.00212 \ 3; \ \alpha(\mathrm{L}) = 0.000231 \ 4; \ \alpha(\mathrm{M}) = 3.89 \times 10^{-5} \ 6; \end{aligned} $

S

 $^{97}_{38}{
m Sr}_{59}$ -5

L

						Adopted	Levels, Gamma	s (continued)	
							$\gamma(^{97}$ Sr) (continu	ied)	
E _i (level)	J_i^π	Eγ	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	δ	α^{\dagger} &	Comments
687.09	5/2+	687 1 3	46.8	0.0	1/2+	E2 [@]		0.001480.27	
007.07	5/2	00111 0	10 0	0.0				0.001100 21	α(K)=0.001307 I9; α(L)=0.0001452 21; α(M)=2.44×10-5 4; α(N+)=3.23×10-6 α(N)=3.04×10-6 5; α(O)=1.92×10-7 3 Mult.: ΔJ=2 Q transition from 248Cm SF; E2 based on RUL
713.82	(5/2)-	69.1 <i>1</i>	100 4	644.73	(3/2)-	M1+E2	0.19 +6-7	0.58 9	$\alpha(K)=0.50\ 7;\ \alpha(L)=0.067\ 15;\ \alpha(M)=0.0114\ 25;\ \alpha(N+)=0.0014\ 3$ $\alpha(N)=0.0014\ 3;\ \alpha(O)=7.3\times10^{-5}\ 8$ B(M1)(W.u.)=0.021\ 4;\ B(E2)(W.u.)=1.5\times10^{2}\ 10 $\delta:\ 1.00\ +65-39\ from\ ^{248}Cm\ SE.$
		113.3 <i>1</i>	22 3	600.48	3/2+,5/2+	[E1]		0.0703	B(E1)(W.u.)= $1.6 \times 10^{-5} 4$ α (K)= $0.0622 9$; α (L)= $0.00686 10$; α (M)= $0.001143 17$; α (N+)= $0.0001492 22$ α (N)= $0.0001407 20$; α (Q)= $8.46 \times 10^{-6} 12$
		128.8 <i>1</i>	42 6	585.06	(3/2)+	E1 [@]		0.0482	B(E1)(W.u.)= $2.0 \times 10^{-5} 5$ $\alpha(K)=0.0426 6; \alpha(L)=0.00469 7; \alpha(M)=0.000782 11;$ $\alpha(N+)=0.0001024 15$ $\alpha(K)=0.05\times10^{-5} 14(\alpha(C)) 5.80\times10^{-6} 0$
		405.8 2	13 3	308.13	7/2+	[E1]		0.00190 3	$\begin{aligned} \alpha(N) &= 9.65 \times 10^{-7} \ f^{4}; \ \alpha(O) &= 5.86 \times 10^{-7} \ g^{4} \\ B(E1)(W.u.) &= 2.0 \times 10^{-7} \ 6 \\ \alpha(K) &= 0.001685 \ 24; \ \alpha(L) &= 0.000182 \ 3; \ \alpha(M) &= 3.06 \times 10^{-5} \ 5; \\ \alpha(N+) &= 4.07 \times 10^{-6} \ 6 \end{aligned}$
		546.5 <i>3</i>	7.5 15	167.13	3/2+	[E1]		0.000909 13	$\alpha(N)=3.82\times10^{-6} 6; \ \alpha(O)=2.45\times10^{-7} 4$ B(E1)(W.u.)=4.7×10 ⁻⁸ 12 $\alpha(K)=0.000806 \ 12; \ \alpha(L)=8.69\times10^{-5} \ 13;$ $\alpha(M)=1.457\times10^{-5} \ 21; \ \alpha(N+)=1.94\times10^{-6}$ $\alpha(N)=1.83\times10^{-6} 3; \ \alpha(O)=1.180\times10^{-7} \ 17$
755.37		232.8 <i>2</i> 588.3 <i>2</i>	17 <i>4</i> 100 <i>13</i>	522.49 167.13	3/2 ⁺ ,5/2 ⁺ 3/2 ⁺				$a(n) = 1.03 \times 10^{-5}, a(0) = 1.100 \times 10^{-17}$
768.7		601.6 <i>3</i> 768.7 ^e 4	15 5 100 <i>15</i>	167.13 0.0	$3/2^+$ $1/2^+$				
771.48	7/2-	57.7 1	100 <i>10</i>	713.82	(5/2)-	M1+E2 [@]	0.26 +9-12	1.2 3	α (K)=1.00 24; α (L)=0.16 7; α (M)=0.027 11; α (N+)=0.0033 12 α (N)=0.0032 12; α (O)=0.00014 3 δ : from ²⁴⁸ Cm SF.
		84.2 ^b 3	17 7	687.09	5/2+	E1 [@]		0.168 <i>3</i>	$\alpha(K)=0.149 \ 3; \ \alpha(L)=0.0166 \ 3; \ \alpha(M)=0.00276 \ 5; \ \alpha(N+)=0.000357 \ 7 \ \alpha(N)=0.000337 \ 6; \ \alpha(O)=1.97\times10^{-5} \ 4 \ I_{\gamma}: \ from \ ^{248}Cm \ SF.$

From ENSDF

 $^{97}_{38}\mathrm{Sr}_{59}$ -7

						Adopted Levels,	, Gammas (co	ontinued)
						γ (⁹⁷ Sr) (continued)	
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	α^{\dagger} &	Comments
					<u> </u>			α (N)=0.001048 <i>16</i> ; α (O)=4.77×10 ⁻⁵ 8 Mult.: Q, ΔJ=2 transition from ²⁴⁸ Cm SF; E2 from negative-parity band γ .
822.42	$(7/2)^+$	135.4 2	60 10	687.09	5/2+	(E2(+M1)) [@]	0.20 14	α (K)=0.17 <i>12</i> ; α (L)=0.024 <i>17</i> ; α (M)=0.004 <i>3</i> ; α (N+)=0.0005 <i>4</i> α (N)=0.0005 <i>4</i> ; α (O)=2.4×10 ⁻⁵ <i>15</i>
		237.3 2	100 20	585.06	(3/2)+	E2 [@]	0.0438	B(E2)(W.u.)=77 22 α (K)=0.0381 6; α (L)=0.00472 7; α (M)=0.000793 12; α (N+)=0.0001015 15 α (N)=9.61×10 ⁻⁵ 14; α (O)=5.31×10 ⁻⁶ 8 Mult: O Al=2 transition from ²⁴⁸ Cm SF: F2 based on BUL
830.83	(9/2+)	522.7 ^a 2	100	308.13	7/2+	[M1,E2]	0.0028 5	$\alpha(K)=0.0025 \ 4; \ \alpha(L)=0.00027 \ 5; \ \alpha(M)=4.6\times10^{-5} \ 8; \\ \alpha(N+)=6.1\times10^{-6} \ 10 \\ \alpha(N)=5 \ 8\times10^{-6} \ 10; \ \alpha(O)=3 \ 6\times10^{-7} \ 5$
916.44		229.6 7 315.5 3 331.3 3 394.1 3 749.4 3 917.0 4	14 9 14 5 18 5 68 9 100 <i>18</i> 27 9	687.09 600.48 585.06 522.49 167.13 0.0	$5/2^+$ $3/2^+, 5/2^+$ $(3/2)^+$ $3/2^+, 5/2^+$ $3/2^+$ $1/2^+$			
946.56	(9/2 ⁻)	175.0 ^b 3	80 40	771.48	7/2-	[M1,E2]	0.08 5	α (K)=0.07 4; α (L)=0.009 6; α (M)=0.0016 10; α (N+)=0.00020 12 α (N)=0.00019 12; α (O)=1.0×10 ⁻⁵ 6
		232.7 ^b 3	100 40	713.82	(5/2)-	[E2]	0.0469	$\alpha(K)=0.0409 \ 6; \ \alpha(L)=0.00507 \ 8; \ \alpha(M)=0.000852 \ 13; \ \alpha(N+)=0.0001090 \ 17 \ \alpha(N)=0.0001033 \ 16; \ \alpha(\Omega)=5.68\times10^{-6} \ 9$
985.49	(3/2 ⁺ ,5/2 ⁺)	271.7 7	2 1	713.82	(5/2)-	[E1]	0.00559 9	$B(E1)(W.u.) > 2.3 \times 10^{-5}$ $\alpha(K) = 0.00495 \ 8; \ \alpha(L) = 0.000539 \ 9; \ \alpha(M) = 9.01 \times 10^{-5} \ 15;$ $\alpha(N+) = 1.194 \times 10^{-5} \ 19$ $\alpha(N) = 1.123 \times 10^{-5} \ 18; \ \alpha(Q) = 7.10 \times 10^{-7} \ 12$
		298.4 2	92	687.09	5/2+	[M1,E2]	0.014 6	$\begin{aligned} \alpha(N) &= 1.123 \times 10^{-17} 0, \ \alpha(O) &= 7.10 \times 10^{-17} 2 \\ \alpha(K) &= 0.013 5; \ \alpha(L) &= 0.0015 6; \ \alpha(M) &= 0.00025 10; \\ \alpha(N+) &= 3.2 \times 10^{-5} 13 \\ \alpha(N) &= 3.1 \times 10^{-5} 12; \ \alpha(O) &= 1.8 \times 10^{-6} 6 \end{aligned}$
		385.3 <i>3</i>	15 3	600.48	3/2+,5/2+	[M1,E2]	0.0066 18	$\alpha(K) = 0.0058 \ 15; \ \alpha(L) = 0.00066 \ 19; \ \alpha(M) = 0.00011 \ 4; \alpha(N+) = 1.5 \times 10^{-5} \ 4; \ \alpha(O) = 8.5 \times 10^{-7} \ 21$
		400.4 2	55 4	585.06	$(3/2)^+$	(M1)	0.00444 7	B(M1)(W.u.)>0.014 α (K)=0.00393 6; α (L)=0.000432 6; α (M)=7.25×10 ⁻⁵ 11;

 ∞

 $^{97}_{38}\mathrm{Sr}_{59}$ -8

L

					A	Adopted Lev	vels, Gammas (o	continued)
						$\gamma(^9$	⁷ Sr) (continued)	
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}^{\ddagger}	E_f	J_f^π	Mult. [#]	$a^{\dagger \&}$	Comments
985.49	(3/2 ⁺ ,5/2 ⁺)	818.5 5	50 14	167.13	3/2+	[M1,E2]	0.00090 4	$ \frac{\alpha(N+)=9.70\times10^{-6} \ 14}{\alpha(N)=9.11\times10^{-6} \ 13; \ \alpha(O)=5.93\times10^{-7} \ 9} \\ \alpha(K)=0.00080 \ 4; \ \alpha(L)=8.7\times10^{-5} \ 5; \ \alpha(M)=1.46\times10^{-5} \ 8; \\ \alpha(N+)=1.95\times10^{-6} \ 10 $
		985.3 <i>3</i>	100 9	0.0	1/2+	[M1,E2]	0.000589 14	$\alpha(N)=1.83\times10^{-6} \ 9; \ \alpha(O)=1.19\times10^{-7} \ 5$ $\alpha(K)=0.000521 \ 12; \ \alpha(L)=5.65\times10^{-5} \ 16; \ \alpha(M)=9.5\times10^{-6} \ 3;$ $\alpha(N+)=1.27\times10^{-6} \ 4$
992.4	9/2+	305.3 ^b 3		687.09	5/2+	E2 [@]	0.0182	$\alpha(N)=1.19\times10^{-6} 3; \ \alpha(O)=7.7/\times10^{-8} 14$ $\alpha(K)=0.01590 \ 23; \ \alpha(L)=0.00190 \ 3; \ \alpha(M)=0.000318 \ 5;$ $\alpha(N+)=4.12\times10^{-5} \ 6$ $\alpha(N)=3.90\times10^{-5} \ 6; \ \alpha(O)=2.25\times10^{-6} \ 4$ Mult.: Q, $\Delta J=2$ transition from ²⁴⁸ Cm SF; E2 from posity-parity hand α
995.2	11/2-	48.5 ^b 3	13 5	946.56	(9/2 ⁻)	[M1,E2]	8 7	$\alpha(K)=65; \alpha(L)=1.615; \alpha(M)=0.2725; \alpha(N+)=0.033$ $\alpha(N)=0.033; \alpha(O)=0.00076$
		223.8 ^b 3	100 8	771.48	7/2-	E2 [@]	0.0539	α(K)=0.0469 7; α(L)=0.00587 9; α(M)=0.000986 15; α(N+)=0.0001258 19 α(N)=0.0001193 18; α(O)=6.50×10-6 10 Mult.: Q, ΔJ=2 transition from 248Cm SF; E2 from negative-parity band α
1036.73	$(11/2^+)$	205.9 ^a 1	100	830.83	$(9/2^+)$	[M1,E2]	0.048 25	$\alpha(K)=0.042\ 22;\ \alpha(L)=0.005\ 3;\ \alpha(M)=0.0009\ 5;\ \alpha(N+)=0.00011\ 6$ $\alpha(N)=0\ 00011\ 6;\ \alpha(O)=6\ F-6\ 3$
1095.50	(3/2+,5/2)	273.1 2 382.4 10 408.4 3 495.1 2 510.3 4 573.0 3 787.0 4	5 3 8 5 45 13 100 8 30 10 15 3 50 10	822.42 713.82 687.09 600.48 585.06 522.49 308.13	$(7/2)^+$ $(5/2)^-$ $5/2^+$ $3/2^+, 5/2^+$ $(3/2)^+$ $3/2^+, 5/2^+$ $7/2^+$			
1197.9	(11/2)+	375.5 ^b 3	100	822.42	(7/2)+	E2 [@]	0.00907 <i>13</i>	α(K)=0.00796 12; α(L)=0.000928 14; α(M)=0.0001557 23; α(N+)=2.03×10-5 α(N)=1.92×10-5 3; α(O)=1.143×10-6 17 Mult.: Q, ΔJ=2 transition from 248Cm SF; E2 from posity-parity band γ.
1276.34	(13/2 ⁺)	239.6 ^{<i>a</i>} 1		1036.73	$(11/2^+)$	[M1,E2]	0.029 14	α (K)=0.025 <i>12</i> ; α (L)=0.0031 <i>15</i> ; α (M)=0.0005 <i>3</i> ; α (N+)=7.E-5 <i>4</i> α (N)=6.E-5 <i>3</i> ; α (O)=3.6×10 ⁻⁶ <i>15</i>
		445.5 ^{<i>a</i>} 1		830.83	(9/2+)	[E2]	0.00524 8	$\alpha(K)=0.00461 \ 7; \ \alpha(L)=0.000529 \ 8; \ \alpha(M)=8.87\times10^{-5} \ 13; \\ \alpha(N+)=1.164\times10^{-5} \ 17 \\ \alpha(N)=1.097\times10^{-5} \ 16; \ \alpha(O)=6.68\times10^{-7} \ 10$

9

 $^{97}_{38}\mathrm{Sr}_{59}$ -9

$\gamma(^{97}Sr)$ (continued)

E_i (level)	J_i^π	Eγ	I_{γ}^{\ddagger}	\mathbf{E}_{f}	J_f^π	Mult. [#]	α^{\dagger} &	Comments
1278.2		283 ^b	100	995.2	11/2-			
1220 50		332 ^{be}	10.0	946.56	(9/2 ⁻)			
1320.70		565.3 3 720 3 2	133 854	/55.37	3/2+ 5/2+			
		735.6 2	100 6	585.06	$(3/2)^+$			
1010 (1320.8 4	39 6	0.0	1/2+			
1342.6	$(13/2^{-})$	3960	100	946.56	(9/2 ⁻)	[E2]	0.00763 11	$\alpha(K)=0.0067070; \alpha(L)=0.00077671; \alpha(M)=0.000130379; \alpha(N+)=1.704\times10^{-5}$
1274 (7		200.2.2	11.2	005 40	$(210 \pm 510 \pm)$			α (N)=1.607×10 ⁻⁵ 23; α (O)=9.65×10 ⁻⁷ 14
13/4.6/		389.3 3	11.3	985.49	$(3/2^+, 5/2^+)$			
		687.7.2	100 20	687.09	(3/2) $5/2^+$			
		789.7 4	41.8	585.06	$(3/2)^+$			
		1207.0 4	20 4	167.13	3/2+			
1383.6	15/2-	388.4 ^b 3	100	995.2	11/2-	E2 [@]	0.00812 12	$\alpha(K)=0.00713 \ II; \ \alpha(L)=0.000828 \ I2; \ \alpha(M)=0.0001390 \ 20; \ \alpha(N+)=1.82\times10^{-5}$
								$\alpha(N)=1.714\times10^{-5}\ 25;\ \alpha(O)=1.026\times10^{-6}\ 15$
								Mult.: $\Delta J=2$ Q transition from ²⁴⁸ Cm SF; E2 from
1425.2	12/2+	142 ob 2	100	002 4	0/2+	E2 <mark>@</mark>	0.00524.8	negative-parity band γ .
1435.3	13/21	442.90 3	100	992.4	9/21	E2	0.00534 8	$\alpha(K)=0.004707; \alpha(L)=0.0005398; \alpha(M)=9.04\times10^{-5}13; \alpha(N+)=1.186\times10^{-5}17$
								$\alpha(N)=1.118\times10^{-5}$ 16; $\alpha(O)=6.80\times10^{-7}$ 10
								Mult.: Q, $\Delta J=2$ transition from ²⁴⁸ Cm SF; E2 from posity-parity band γ .
1507.3	$(1/2^+, 3/2, 5/2^+)$	591.0 4	57 21	916.44				
		820.0 5	50 14	687.09	$5/2^+$			
15/18 83	$(15/2^+)$	$1507.5 \ 3$ $272 \ 5^{a} \ 1$	100 18	0.0 1276 34	$\frac{1}{2}$	[M1 E2]	0.010.8	$\alpha(K) = 0.017.7; \alpha(L) = 0.0020.9; \alpha(M) = 0.00033.15;$
15+0.05	(15/2)	272.3 1		1270.34	(15/2)	[111,122]	0.019 0	$\alpha(N=0.0177, \alpha(D=0.00207, \alpha(N=0.00003715, \alpha(N=0.0003715, \alpha(N=0.0017510, \alpha(N=0.00$
		510 14 1		1026 72	$(11/2^{+})$	1201	0.00242.5	$\alpha(N) = 4.1 \times 10^{-5} 18; \ \alpha(O) = 2.4 \times 10^{-5} 9$
		512.1. 1		1036.73	$(11/2^{+})$	[E2]	0.00342 5	$\alpha(\mathbf{K})=0.00301$ 5; $\alpha(\mathbf{L})=0.000341$ 5; $\alpha(\mathbf{M})=5.73\times10^{-6}$ 8; $\alpha(\mathbf{N}+)=7.55\times10^{-6}$ 11
		1				0		$\alpha(N)=7.11\times10^{-6}\ 10;\ \alpha(O)=4.39\times10^{-7}\ 7$
1707.6	$(15/2)^+$	509.7 ⁰ 3	100	1197.9	$(11/2)^+$	E2 [@]	0.00347 5	$\alpha(K)=0.00305 \ 5; \ \alpha(L)=0.000346 \ 5; \ \alpha(M)=5.81\times10^{-5} \ 9; \\ \alpha(N+)=7.66\times10^{-6} \ 11$
								$\alpha(N)=7.21\times10^{-6}$ 11; $\alpha(O)=4.45\times10^{-7}$ 7
								Mult.: Q, $\Delta J=2$ transition from ²⁴⁸ Cm SF; E2 from
1050.04	$(17/2^{+})$	204 00 1		1549.92	(15/0+)		0.014.5	posity-parity band γ .
1852.84	$(1/2^{\circ})$	304.0" 1		1548.83	$(15/2^{\circ})$	[MII,E2]	0.014 5	$\alpha(\mathbf{K})=0.012$ 3; $\alpha(\mathbf{L})=0.0014$ 0; $\alpha(\mathbf{M})=0.00023$ 9;

$\frac{\gamma(^{97}\text{Sr}) \text{ (continued)}}{(\text{continued})}$ $\frac{E_i(\text{level})}{I_i} \frac{J_i^{\pi}}{I_i} \frac{E_{\gamma}}{I_i} \frac{I_{\gamma}^{\ddagger}}{I_f} \frac{E_f}{I_f} \frac{J_f^{\pi}}{I_f} \frac{\text{Mult.}^{\#}}{I_f} \frac{\alpha^{\dagger}\&}{\alpha^{(N+.)=3.0\times10^{-5} 12}} \\ 1852.84 (17/2^+) 576.5^a \ I 1276.34 (13/2^+) [E2] 0.00241 \ 4 \alpha(\text{K})=0.00213 \ 3; \ \alpha(\text{L})=0.000239 \ 4; \ \alpha(\text{M})=4.02\times10^{-5} \ 6; \ \alpha(\text{N}+)=5.30\times10^{-6} \ 8 \\ \alpha(\text{N})=4.99\times10^{-6} \ 7; \ \alpha(\text{O})=3.11\times10^{-7} \ 5 \\ 1903.6 (17/2^-) 561^c 100 1342.6 (13/2^-) [E2] 0.00261 \ 4 \alpha(\text{K})=0.00230 \ 4; \ \alpha(\text{L})=0.000259 \ 4; \ \alpha(\text{M})=4.35\times10^{-5} \ 6; \ \alpha(\text{N}+)=5.75\times10^{-6} \ 8 \\ \alpha(\text{N})=5.41\times10^{-6} \ 8; \ \alpha(\text{O})=3.37\times10^{-7} \ 5 \\ 1906.4 19/2^- 522.8^b \ 3 100 1383.6 15/2^- E2^{\textcircled{0}} 0.00321 \ 5 \alpha(\text{K})=0.00283 \ 4; \ \alpha(\text{L})=0.000321 \ 5; \ \alpha(\text{M})=5.38\times10^{-5} \ 8; \ \alpha(\text{N}+)=7.09\times10^{-6} \ 7 \\ \alpha(\text{K})=0.00283 \ 4; \ \alpha(\text{L})=0.000321 \ 5; \ \alpha(\text{M})=5.38\times10^{-5} \ 8; \ \alpha(\text{N}+)=7.09\times10^{-6} \ 7 \\ \alpha(\text{K})=0.00283 \ 4; \ \alpha(\text{L})=0.000321 \ 5; \ \alpha(\text{M})=5.38\times10^{-5} \ 8; \ \alpha(\text{N}+)=7.09\times10^{-6} \ 7 \\ \alpha(\text{K})=0.00283 \ 4; \ \alpha(\text{L})=0.000321 \ 5; \ \alpha(\text{M})=5.38\times10^{-5} \ 8; \ \alpha(\text{N}+)=7.09\times10^{-6} \ 8; \ \alpha(\text{K})=0.00283 \ 4; \ \alpha(\text{L})=0.000321 \ 5; \ \alpha(\text{M})=5.38\times10^{-5} \ 8; \ \alpha(\text{M}+)=7.09\times10^{-6} \ 8; \ \alpha(\text{K})=0.00283 \ 4; \ \alpha(\text{L})=0.000321 \ 5; \ \alpha(\text{M})=5.38\times10^{-5} \ 8; \ \alpha(\text{M}+)=7.09\times10^{-6} \ 8; \ \alpha(\text{K})=0.000321 \ 5; \ \alpha(\text{M})=5.38\times10^{-5} \ 8; \ \alpha(\text{M}+)=7.09\times10^{-6} \$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$a(\mathbf{R}) = 0.00225 \ i, \ a(\mathbf{R}) = 0.00225 \$
1906.4 $19/2^{-}$ 522.8 ^b 3 100 1383.6 $15/2^{-}$ E2 [@] 0.00321 5 $\alpha(K)=0.00283$ 4; $\alpha(L)=0.000321$ 5; $\alpha(M)=5.38\times10^{-5}$ 8; $\alpha(N+)=7.09\times10^{-6}$
10
$\alpha(N)=6.68\times10^{-6}$ 10; $\alpha(O)=4.13\times10^{-7}$ 6
Mult.: $\Delta J=2 \text{ Q}$ transition from ²⁴⁸ Cm SF; E2 from negative-parity band γ .
2010.4 $17/2^+$ 575.1 ^b 3 100 1435.3 $13/2^+$ E2 [@] 0.00243 4 $\alpha(K)=0.00214$ 3; $\alpha(L)=0.000241$ 4; $\alpha(M)=4.04\times10^{-5}$ 6; $\alpha(N+)=5.34\times10^{-6}$ 8
$\alpha(N) = 5.03 \times 10^{-6}$ 7; $\alpha(O) = 3.14 \times 10^{-7}$ 5
Mult.: Q, $\Delta J=2$ transition from ²⁴ °Cm SF; E2 from posity-parity band γ .
2188.4 (19/2 ⁺) 335.5 ^o 3 1852.84 (17/2 ⁺) [M1,E2] 0.010 4 α (K)=0.009 3; α (L)=0.0010 4; α (M)=0.00017 6; α (N+)=2.2×10 ⁻³ 8
$\alpha(N) = 2.1 \times 10^{-7} ; \alpha(O) = 1.5 \times 10^{-7} 4$ 640 ^C 1548 83 (15/2 ⁺) [E2] 0.00180 3 $\alpha(K) = 0.001586 23; \alpha(L) = 0.0001770 25; \alpha(M) = 2.07 \times 10^{-5} 5;$
$\alpha(N) = 3.93 \times 10^{-6} 6$
$\alpha(N)=3.70\times10^{-6}$ 6; $\alpha(O)=2.33\times10^{-7}$ 4
2345.6 $(19/2^+)$ 638.0 ^b 3 100 1707.6 $(15/2)^+$ [E2] 0.00181 3 $\alpha(K)=0.001600\ 23;\ \alpha(L)=0.000179\ 3;\ \alpha(M)=3.00\times10^{-5}\ 5;\ \alpha(N+)=3.97\times10^{-6}$
6
$\alpha(N)=3.73\times10^{-6} 6; \alpha(O)=2.35\times10^{-7} 4$
2553.6 $(21/2^+)$ 365 ^C 2188.4 $(19/2^+)$ [M1,E2] 0.0078 22 α (K)=0.0068 20; α (L)=0.00078 24; α (M)=0.00013 4; α (N+)=1.7×10 ⁻⁵ 5
$\alpha(N) = 1.6 \times 10^{-5} 5; \ \alpha(O) = 1.0 \times 10^{-5} 3$
701° 1852.84 (17/2°) [E2] 0.001405 20 α (K)=0.001239 78; α (L)=0.0001375 20; α (M)=2.31×10 ° 4; α (N+)=3.06×10 ⁻⁶
$\alpha(N=2.88 \times 10^{-6} 4; \alpha(\Omega)=1.82 \times 10^{-7} 3$
$2559.9 23/2^{-} 653.5^{b}.3 100 1906.4 19/2^{-} \text{E2}^{@} 0.001697.24 \alpha(\text{K}) = 0.001498.21; \alpha(\text{L}) = 0.0001669.24; \alpha(\text{M}) = 2.80 \times 10^{-5}.4;$
$\alpha(N+)=3.71 \times 10^{-6}$
$\alpha(N)=3.49\times10^{-6}$ 5; $\alpha(O)=2.20\times10^{-7}$ 3
Mult.: $\Delta J=2 \text{ Q}$ transition from ²⁴⁸ Cm SF; E2 from negative-parity band γ .
2640.6 $(21/2^{-})$ 737 ^C 100 1903.6 $(17/2^{-})$ [E2] 0.001229 18 α (K)=0.001086 16; α (L)=0.0001201 17; α (M)=2.02×10 ⁻⁵ 3;
$\alpha(N+)=2.68\times10^{-6}$
$\alpha(N) = 2.52 \times 10^{\circ} 4; \ \alpha(U) = 1.599 \times 10^{\circ} 2.52 \times 10^{-5} 4$
$\frac{2}{12.4} (21/2^{\circ}) 102.0^{\circ} 5 100 2010.4 1/2^{\circ} [E2] 0.00139/20 \alpha(K) = 0.001234 18; \alpha(L) = 0.00013/0.20; \alpha(M) = 2.30 \times 10^{-9} 4; \alpha(N+1) = 3.05 \times 10^{-6}$
$\alpha(N)=2.87\times10^{-6} 4 \cdot \alpha(O)=1.82\times10^{-7} 3$

11

From ENSDF

$\gamma(^{97}Sr)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{\ddagger}	E_f	${ m J}_f^\pi$	Mult. [#]	α^{\dagger} &	Comments
2854.9		1480.0 5 1535.3 8 2254 0 6	100 29 29 15 100 29	1374.67 1320.70 600.48	3/2+ 5/2+			
2948.5	(23/2 ⁺)	395 ^c	100 27	2553.6	$(21/2^+)$	[M1,E2]	0.0061 16	$\alpha(K)=0.0054 \ 14; \ \alpha(L)=0.00061 \ 17; \ \alpha(M)=0.00010 \ 3; \ \alpha(N+)=1.4\times10^{-5} \ 4$
		760 ^C		2188.4	(19/2+)	[E2]	0.001134 16	$ \begin{aligned} &\alpha(\mathbf{N}) = 1.3 \times 10^{-5} \ 4; \ \alpha(\mathbf{O}) = 7.9 \times 10^{-7} \ 18 \\ &\alpha(\mathbf{K}) = 0.001002 \ 14; \ \alpha(\mathbf{L}) = 0.0001107 \ 16; \ \alpha(\mathbf{M}) = 1.86 \times 10^{-5} \ 3; \\ &\alpha(\mathbf{N}+) = 2.47 \times 10^{-6} \end{aligned} $
3102.6	(23/2+)	757 ^C		2345.6	(19/2 ⁺)	[E2]	0.001146 16	$\alpha(N)=2.32\times10^{-6} 4; \ \alpha(O)=1.478\times10^{-7} 21$ $\alpha(K)=0.001013 \ 15; \ \alpha(L)=0.0001119 \ 16; \ \alpha(M)=1.88\times10^{-5} \ 3;$ $\alpha(N+)=2.49\times10^{-6}$
3333.9	(27/2 ⁻)	774.0 ^b 3	100	2559.9	23/2-	[E2]	0.001082 16	$\alpha(N)=2.35\times10^{-6} 4; \ \alpha(O)=1.493\times10^{-7} 21$ $\alpha(K)=0.000956 \ 14; \ \alpha(L)=0.0001055 \ 15; \ \alpha(M)=1.771\times10^{-5} \ 25$ $\alpha(N)=2 \ 21\times10^{-6} 4; \ \alpha(O)=1 \ 410\times10^{-7} \ 20$
3533.4	(25/2+)	821 ^c	100	2712.4	(21/2 ⁺)	[E2]	0.000932 13	$\alpha(\mathbf{K}) = 0.000824 \ I2; \ \alpha(\mathbf{L}) = 9.06 \times 10^{-5} \ I3; \ \alpha(\mathbf{M}) = 1.521 \times 10^{-5} \ 22; \\ \alpha(\mathbf{N}+) = 2.02 \times 10^{-6}$
3975.6	(27/2 ⁺)	873 ^c	100	3102.6	(23/2+)	[E2]	0.000800 12	$ \begin{aligned} &\alpha(\text{N}) = 1.90 \times 10^{-6} \ 3; \ \alpha(\text{O}) = 1.216 \times 10^{-7} \ 17 \\ &\alpha(\text{K}) = 0.000708 \ 10; \ \alpha(\text{L}) = 7.76 \times 10^{-5} \ 11; \ \alpha(\text{M}) = 1.302 \times 10^{-5} \ 19; \\ &\alpha(\text{N}+) = 1.734 \times 10^{-6} \end{aligned} $
4219.9	(31/2 ⁻)	886 ^c	100	3333.9	(27/2 ⁻)	[E2]	0.000772 11	$\begin{aligned} &\alpha(\mathrm{N}) = 1.630 \times 10^{-6} \ 23; \ \alpha(\mathrm{O}) = 1.046 \times 10^{-7} \ 15 \\ &\alpha(\mathrm{K}) = 0.000683 \ 10; \ \alpha(\mathrm{L}) = 7.48 \times 10^{-5} \ 11; \ \alpha(\mathrm{M}) = 1.255 \times 10^{-5} \ 18; \\ &\alpha(\mathrm{N}+) = 1.672 \times 10^{-6} \end{aligned}$
4468.4	(29/2+)	935 ^c	100	3533.4	(25/2+)	[E2]	0.000678 10	$\begin{aligned} &\alpha(\mathrm{N}) = 1.571 \times 10^{-6} \ 22; \ \alpha(\mathrm{O}) = 1.009 \times 10^{-7} \ 15 \\ &\alpha(\mathrm{K}) = 0.000600 \ 9; \ \alpha(\mathrm{L}) = 6.56 \times 10^{-5} \ 10; \ \alpha(\mathrm{M}) = 1.100 \times 10^{-5} \ 16; \\ &\alpha(\mathrm{N}+) = 1.467 \times 10^{-6} \end{aligned}$
4955.6	(31/2+)	980 ^c	100	3975.6	(27/2+)	[E2]	0.000607 9	$\alpha(N)=1.378\times10^{-6} \ 20; \ \alpha(O)=8.87\times10^{-8} \ 13$ $\alpha(K)=0.000537 \ 8; \ \alpha(L)=5.86\times10^{-5} \ 9; \ \alpha(M)=9.83\times10^{-6} \ 14;$ $\alpha(N+)=1.311\times10^{-6} \ 19$
5210.9	(35/2-)	991 ^c	100	4219.9	(31/2 ⁻)	[E2]	0.000591 9	$\alpha(N)=1.231\times10^{-6} \ 18; \ \alpha(O)=7.95\times10^{-8} \ 12$ $\alpha(K)=0.000523 \ 8; \ \alpha(L)=5.70\times10^{-5} \ 8; \ \alpha(M)=9.57\times10^{-6} \ 14;$ $\alpha(N+)=1.277\times10^{-6} \ 18$
6305.9	(39/2-)	1095 ^c	100	5210.9	(35/2-)	[E2]	0.000471 7	$\begin{aligned} &\alpha(\mathrm{N}) = 1.199 \times 10^{-6} \ 17; \ \alpha(\mathrm{O}) = 7.75 \times 10^{-8} \ 11 \\ &\alpha(\mathrm{K}) = 0.000417 \ 6; \ \alpha(\mathrm{L}) = 4.52 \times 10^{-5} \ 7; \ \alpha(\mathrm{M}) = 7.59 \times 10^{-6} \ 11; \\ &\alpha(\mathrm{N}+) = 1.014 \times 10^{-6} \ 15 \\ &\alpha(\mathrm{N}) = 9.52 \times 10^{-7} \ 14; \ \alpha(\mathrm{O}) = 6.18 \times 10^{-8} \ 9 \end{aligned}$

[†] Additional information 1.

$\gamma(^{97}\text{Sr})$ (continued)

^{\ddagger} Relative I γ deexciting level.

[#] From ⁹⁷Rb β^- dataset when not noted otherwise; deduced from $\alpha(exp)$ and $\alpha(K)exp$ (measured intensity balance and I(K x ray)/I γ , respectively, in coincidence spectra). See also table comments.

[@] From ²⁴⁸Cm SF dataset deduced by evaluator from ang. correlations and $\alpha(exp)$'s (from intensity balance). See also table comments.

& For M1,E2 and E2,M1 transitions the α given is the average of α (M1) and α (E2) with the uncertainty including both values.

^{*a*} From ²⁵²Cf SF decay. ^{*b*} From ²⁴⁸Cm SF decay. ^{*c*} From ²³⁸U(α ,F γ) dataset.

^d assumed by evaluator for γ 's from ²⁴⁸Cm SF decay.

^e Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

⁹⁷₃₈Sr₅₉

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{97}_{38}{
m Sr}_{59}$

 $^{97}_{38}{
m Sr}_{59}$

From ENSDF

Adopted Levels, Gammas

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{97}_{38}{
m Sr}_{59}$