	Туре	Author	History Citation	Literature Cutoff Date		
	Full Evaluation	N. Nica	NDS 111,525 (2010)	19-Nov-20	09	
$Q(\beta^{-}) = -3.52 \times 10^{3} 4$; S(n)=8112	<i>3</i> ; S(p)=7588 <i>6</i> ; C	$Q(\alpha) = -173$	8 <i>3</i> 2012Wa38			
Note: Current evaluation has use	ed the following Q	record -35	520 40 <i>8111.5</i> 28 758	4 10 -1734 9	2003Au03.	
Theory, calculations, sy calculated B(M1), sy calculated log ft:	stematics: pec. factors fo 1998Vi09	or pseudo	spin partners: 2000	<i>l</i> o12		
			⁹⁷ Ru Levels			
Mo + 22 MeV α and Ru + 11	MeV d produced	a 1.84 6 m	s activity with $E\gamma = 227.5$	keV which was	assigned to ⁹⁷ Ru (19	

Mo + 22 MeV α and Ru + 11 MeV d produced a 1.84 6 ms activity with E γ =227 5 keV which was assigned to ⁹⁷Ru (1963De37). Not all levels proposed by the various experimenters are included in Adopted Levels. For additional, more tentative levels, see the individual data sets.

Cross Reference	(XREF)	Flags
-----------------	--------	-------

		A 9 B 9 C 6 D 8	⁹⁷ Rh ε decay (⁹⁷ Rh ε decay (⁵⁵ Cu(³⁶ S,p3nγ) ⁸⁸ Sr(¹² C,3nγ)	30.7 min) E 93 Nb(⁷ Li,3n γ) 46.2 min) F 94 Mo(α ,n γ), (⁶ Li,p2n γ)) G 95 Mo(α ,2n γ) H 96 Ru(d,p)
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0.0@	5/2+	2.83 d 23	ABCDEFGH	$%ε+%β^+=100$ $μ=(-)0.787 \ 8 \ (2005St24)$ $J^{π}$: L=2 in (d,p), M1(+E2) γ transition from L=4, 421.54-keV level. T _{1/2} : weighted average of 2.79 d 3 (1998Ko27), 2.88 d 4 (1958Ka95), and 2.9 d 1 (1966Cr09). μ: from g-factor=0.315 3 (1985Ed06) and g-factor=(-)0.315 3 (1980Le09, recalculated by 1981Ha11). Others: 0.72 5 (1981Ha11), 0.687 27 (1976Ba39).
189.22 6	3/2+	0.23 ns 2	ABC FGH	J ^{π} : M1+E2 γ to g.s.; log <i>ft</i> =6.43 (log <i>f</i> ^{4<i>u</i>} <i>t</i> =7.79) from ⁹⁷ Rh 1/2 ⁻ state (J Ne 5/2 ⁺ , 7/2 ⁺). T _{1/2} : from ⁹⁷ Rh ε decay (46.2 min).
421.54 [#] 5	7/2+	25 ps 8	A CDEFGH	J^{π} : L=4 in (d,p); M1 γ to L=2 g.s. T _{1/2} : weighted average (with external unc.) of 34.6 ps 21 (¹² C,3n γ) and 17.9 ps 19 (³⁶ S,p3n γ).
527.84 5 610.79 8 771.38 8 840.19 7	3/2 ⁺ (1/2 ⁺ ,3/2,5/2 ⁺) 3/2 ⁺ 7/2 ⁺		B F H B F B F H A FG	$J^{\pi}: L=2 \text{ in } (d,p); 3/2 \text{ from } ((\alpha,n\gamma), (^{6}\text{Li},p2n\gamma)).$ $J^{\pi}: \gamma \text{ to } 5/2^{+} \text{ level}, \gamma \text{ from } 1/2^{+} \text{ level}.$ $J^{\pi}: L=2 \text{ in } (d,p); \log f^{4u}t=7.86 \text{ from } {}^{97}\text{Rh } 1/2^{-} \text{ state } (J \text{ Ne } 5/2^{+}).$ $J^{\pi}: D+Q \gamma \text{ to } g.s.; \log ft=5.78 5 \text{ from } {}^{97}\text{Rh } 9/2^{+} \text{ state } (J \text{ Ne } 3/2^{+}, 5/2^{+}).$
878.76 [@] 6 908.29 7 1184.54 9	9/2 ⁺ 1/2 ⁺ 3/2 ⁺ ,5/2 ⁺		A CDEFG B F H B F H	J^{π} : E2 γ to g.s.; 9/2 from (⁷ Li,3n γ), (α ,2n γ). J^{π} : L=0 in (d,p). J^{π} : L=2 in (d,p).
1199.11 [#] <i>16</i>	11/2+	7 ps 4	A CDEFG	J ^{π} : E2 Δ J=2 γ to 7/2 ⁺ level; D+Q to (9/2) ⁺ level; 11/2 from γ excit ((α ,n γ),(⁶ Li,p2n γ)). T _{1/2} : unweighted average of 3.5 ps 7 (¹² C,3n γ) and 10.5 ps <i>16</i> (³⁶ S,p3n γ).
1229.43 8	9/2+		A F	J^{π} : E2 γ to 5/2 ⁺ g.s., D+Q γ to 7/2 ⁺ level; 9/2 from ((α ,n γ),(⁶ Li,p2n γ)).

Continued on next page (footnotes at end of table)

⁹⁷Ru Levels (continued)

E(level) [†]	$\mathrm{J}^{\pi \ddagger}$	T _{1/2}	XREF	Comments
1376 87 14		· · · ·	R F	
1477 7	$3/2^+.5/2^+$		н	J^{π} : J: L=2 in (d.p).
1543.02 19	$(7/2.9/2.11/2^+)$		A F	J^{π} : log ft=6.32 from ⁹⁷ Rh 9/2 ⁺ state: γ to 7/2 ⁺ level.
1595.6 10	(,,=,,,=,=,=,)		G	
1619.6 3	$(11/2)^+$		A FG	J ^{π} : E2 γ to 7/2 ⁺ level, D+Q γ to (9/2) ⁺ level; 11/2 from $\gamma(\theta)$ ((α ,n γ),(⁶ Li,p2n γ)).
$1650.9^{\textcircled{0}}{4}$	$(13/2^+)$		С	J^{π} : (E2) γ to (9/2) ⁺ level: 13/2 from (³⁶ S.p3n γ).
1825.7 3	$(13/2)^+$		CDEFG	J^{π} : E2 γ to $(9/2)^+$ level: 13/2 from $(^{7}\text{Li},3n\gamma)$, $((\alpha,n\gamma), (^{6}\text{Li},p2n\gamma))$.
1845.69 [#] 22	$(15/2)^+$	12.7 ps 14	CDEFG	J^{π} : E2 to (11/2) ⁺ ; 15/2 from (⁷ Li,3n γ), ((α ,n γ),(⁶ Li,p2n γ)), (α ,2n γ).
0				$T_{1/2}$: weighted average of 14.6 ps 21 (¹² C,3n γ) and 11.6 ps 16 (³⁶ S,p3n γ).
1879.3 ^{&} 3	$11/2^{-}$		C EFGH	XREF: H(1887).
1929 7	3/2+,5/2+		н	J^{π} : L=5 in (d,p); 11/2 from (⁷ Li,3n γ), ((α ,n γ)(⁶ Li,p2n γ)), (α ,2n γ). J^{π} : L=2 in (d,p).
1932.32 <i>13</i>	7/2+		A F	J^{π} : log ft=5.33 from ⁹⁷ Rh 9/2 ⁺ level; γ to 3/2 ⁺ level.
1990.07 22	(7/2)		A F	J ^{π} : from $\gamma(\theta)$, excit ((α ,n γ),(⁶ Li,p2n γ)).
1998.6 <i>3</i>	7/2+,9/2+,11/2+		Α	J^{π} : log ft=5.77 6 (log $f^{1u}t=6.61$) from ⁹⁷ Rh 9/2 ⁺ state.
2005 7			Н	
2020.1 8			F	
2080 7	7/0+		. н	π^{π} 1 ((())) π^{97} D1 ()() π^{+} () () () π^{+} () () () () π^{+} () () () () () () () () () () () () (
2150.9 5	$1/2^{+}$ $1/2^{+}$		A u	J [*] : log $ft=5.31$ from ² Kn 9/2 ⁺ state; weak γ to 3/2 ⁺ level.
21757	$\frac{1}{2}$ $\frac{3}{2^{-}}$		R	I^{π} : log $f = 4.71$ from 97 Rh $1/2^{-}$ state: γ to $5/2^{+}$ level
2245.89 18	3/2-		B	J^{π} : log ft =4.74 from ⁹⁷ Rh 1/2 ⁻ state; strong γ to 5/2 ⁺ g.s. rules out $1/2^{-}$.
2284 7	$1/2^{+}$		Н	J^{π} : L=0 in (d,p).
2300.7 6	1/2,3/2		В	J^{π} : log ft=6.04 (log f ¹ "t=6.93) from ⁹⁷ Rh 1/2 ⁻ state rules out J=5/2 and higher.
2312.78 <i>19</i> 2350 7	1/2-,3/2-		B H	J^{π} : log <i>ft</i> =5.51 from ⁹⁷ Ru 1/2 ⁻ state. E(level): unresolved doublet with L=0 + L=2.
2505.6 [@] 6 2506 7	$(17/2^+)$ $1/2^+$		С Н	J^{π} : (E2) γ to (13/2 ⁺) level; 17/2 from (³⁶ S,p3n γ). J^{π} : L=0 in (d,p).
2545.54 [#] 25	(17/2 ⁺)	11.4 ps 12	CDEFG	J^{π} : D+Q γ to (15/2) ⁺ level; 17/2 from (⁷ Li,3n γ), from $\gamma(\theta)$, excit
				$T_{1/2}$: from (³⁶ S p3ny): other: 3.5 ps<(¹² C.3ny).
2552.8 <mark>&</mark> 8	15/2-		CF	J^{π} : E2 γ to $11/2^{-}$ level: 15/2 from $\gamma(\theta)$ ((α .n γ), (⁶ Li.n2n γ)).
2564.90 16	$3/2^{-}$		В	J^{π} : log ft=4.79 from ⁹⁷ Rh 1/2 ⁻ state: γ to 5/2 ⁺ g.s.
2576.0 5	1/2-,3/2-		В	J^{π} : log ft=5.66 from ⁹⁷ Rh 1/2 ⁻ state.
2591.4 4	7/2+,9/2+,11/2+		Α	J^{π} : log ft=5.35 from ⁹⁷ Rh 9/2 ⁺ state.
2596.2 4	15/2-		Е	J^{π} : E2 γ to 11/2 ⁻ level: 15/2 from (⁷ Li,3n γ).
2598.7 <i>11</i> 2605 <i>7</i>	$(17/2^+)$		D G H	J^{π} : (E2) γ to (13/2) ⁺ level; 17/2 from (α ,2n γ).
2640.4 4	$(17/2)^+$		EF	J ^{π} : E2 γ to (13/2) ⁺ level; 17/2 from $\gamma(\theta)$ (($\alpha,n\gamma$),(⁶ Li,p,2n\gamma)).
2647.82 21	3/2-		В	J ^{π} : log ft=4.84 from ⁹⁷ Rh 1/2 ⁻ state; strong γ to 5/2 ⁺ g.s.
2652 7	$1/2^{+}$		Н	J^{π} : L=0 in (d,p).
2660.4 [@] 7 2702 7	(19/2 ⁺) 1/2 ⁺		С Н	J^{π} : (M1(+E2)) γ to (17/2 ⁺); 17/2 from (³⁶ S,p3n γ). J^{π} : L=0 in (d,p).
2739.1 [#] 3	$(21/2^+)$	7.8 ns 2	С Н	μ =+9.2 8 (1982Di18,2005St24)
				J ^{π} : E2 γ to (17/2 ⁺) level; J ^{π} consistent with g-factor; from (⁷ Li,3n γ), $\gamma(\theta)$ ((α ,n γ),(⁶ Li,p2n γ)).

Continued on next page (footnotes at end of table)

⁹⁷Ru Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
				$T_{1/2}$: from (α ,2n γ); others: 8.7 ns 9 (12 C,3n γ), 7.3 ps 8 (36 S,p3n γ),
				whose unit is probably a typographic error.
				μ : from g-factor=0.88 8, consistent with configuration=((π
				$g_{9/2})_{8+}^{+2}(\nu d_{5/2}))$ (1982Di18).
2743.1 11	$(17/2^+)$		F	J^{π} : D+Q γ to $(15/2)^+$; 17/2 from $\gamma(\theta)$ $((\alpha,n\gamma),(^{\circ}\text{Li},pn\gamma))$.
2754.7 4	7/2+		Α	J^{π} : log ft=5.38 from ⁹⁷ Rh 9/2 ⁺ state; γ to 3/2 ⁺ level.
2759.4 3	$(19/2)^+$		C EFG	J^{n} : E2 γ to $(15/2)^{+}$; 19/2 from ('Li,3n γ), $((\alpha,n\gamma), (^{\circ}Li,p2n\gamma))$,
2760.4 5	7/2+,9/2+,11/2+		A	J^{n} : log $ft=5.56$ from 97 Rh $9/2^{+}$ state.
2762.8 5	$(19/2^+)$		C	J [*] : (M1(+E2)) γ to (1//2 ⁺); 19/2 from (³⁰ S,p3n γ).
2764.77.22	1/2, $3/2$		в	J^{π} : log $ft=5.08$ from 7^{7} Rn $1/2^{-5}$ state.
2766.2.5	$1/2^{+}, 9/2^{+}, 11/2^{+}$		A	J [*] : log $ft=5.52$ from ⁻⁷ Rn 9/2 ⁺ state.
2/90.9 3	1/2, $3/2$		B	J ^T : $\log f = 5.15$ from ⁹⁷ Rn 1/2 state.
2929.70 22	5/2 7/2+		Б А	J^{π} : log $f_{t}=5.17$ from ⁹⁷ Ph $0/2^{+}$ state: strong γ to $3/2^{-}$ g.s.
3030 7	$3/2^+$ $5/2^+$		АН	J : $\log J = 5.50$ from Ki $9/2$ state, 2777.99 to $5/2$ level. I^{π} : L=2 in (d p)
3225 5 <mark>&</mark> 0	$(10/2^{-})$		с ^п	I^{π} : (E2) γ to $(15/2)^{-1}$ level: 10/2 from $(^{36}S n^3 n \gamma)$
3264.9.4	(19/2)		R	I^{π} : log $f_{t}=5.29$ from 97 Rh $1/2^{-}$ state: v to $5/2^{+}$ g s
3269 5 5	$(19/2^{-})$		F	I^{π} : from (⁷ L i 3ny)
3296.1.6	$1/2^{-}.3/2^{-}$		в	J^{π} : log $ft=5.14$ from ⁹⁷ Rh 1/2 ⁻ state.
3303.1 8	$(21/2^+)$		C	J^{π} : (M1(+E2)) γ to (19/2 ⁺): 21/2 from (³⁶ S.p3n γ).
3368.8 6	$7/2^+, 9/2^+, 11/2^+$		Α	J^{π} : log ft=4.4 from ⁹⁷ Rh 9/2 ⁺ state.
3374.7 4	3/2-		В	J^{π} : log ft=4.44 from ⁹⁷ Rh 1/2 ⁻ state; strong γ to 5/2 ⁺ g.s.
3458.9 6	3/2-		В	J^{π} : log ft=5.06 from ⁹⁷ Rh 1/2 ⁻ state; γ to 5/2 ⁺ g.s.
3480.8 15	$(21/2^+)$		DG	J^{π} : from (α ,2n γ).
3609.5 [@] 8	(23/2+)		С	J^{π} : (E2) γ to (19/2 ⁺) and (M1(+E2)) γ to (21/2 ⁺); 23/2 from (³⁶ S,p3n γ).
3620.9 5	$(23/2)^+$		C EF	J^{π} : E2 γ to (19/2) ⁺ ; 23/2 from (⁷ Li,3n γ), ((α ,n γ),(⁶ Li,p2n γ)).
3669.5 [#] 7	$(25/2^+)$	4.9 ps 6	DEFG	J^{π} : E2 γ to (21/2 ⁺) level; 25/2 from (⁷ Li,3n γ), ((α ,n γ),
				$(^{6}\text{Li},p2n\gamma)), (\alpha,2n\gamma).$
				$T_{1/2}$: from (³⁶ S,p3n γ).
3941.1 5			E	
3941.8 <mark>&</mark> 10	$(23/2^{-})$		С	J ^π : (E2) γ to (19/2 ⁻) level; 23/2 from (³⁶ S,p3nγ).
4262.7 [#] 7	(27/2 ⁺)	4.9 ps 6	CDEFG	J^{π} : (E2) γ to (23/2) ⁺ level and (M1(+E2)) γ to (25/2 ⁺); 27/2 from (³⁶ S,p3n γ).
				$T_{1/2}$: from (³⁶ S,p3n γ).
4653.1 [@] 9	$(27/2^+)$		С	J^{π} : (E2) γ to (23/2 ⁺) level; 27/2 from (³⁶ S,p3n γ).
4694.5 <mark>&</mark> 10	$(27/2^{-})$		С	J^{π} : (E2) γ to (23/2 ⁻) level: 27/2 from (³⁶ S.p3n γ).
4730.1 [#] 8	$(29/2^+)$	7.1 ps 9	C EF	J^{π} : (E2) γ to (25/2 ⁺) level and (M1(+E2)) γ to (27/2 ⁺): 29/2 from
	(=>)=)	, in po y		$(^{36}S.p.3n\gamma).$
				$T_{1/2}$: from (³⁶ S,p3n γ).
4763.3 8			С	
5106.4 8	$(31/2^+)$		С	J^{π} : (E2) γ to (27/2 ⁺) level; 31/2 from (³⁶ S,p3n γ).
5373.2 [#] 8	(33/2 ⁺)	≤12.5 ps	С	J^{π} : (E2) γ to (29/2 ⁺) level and (M1(+E2)) γ to (31/2 ⁺); 33/2 from (³⁶ S,p3n γ).
				$T_{1/2}$: from (³⁶ S,p3n γ).
5490.0 <mark>&</mark> 11			С	
5721.8 11			С	
6133.3 [@] 10	$(31/2^+)$		С	J ^{π} : (E2) γ to (27/2 ⁺) level; 31/2 from (³⁶ S,p3n γ).
6248.4 [#] 9	$(35/2^+)$		С	J^{π} : (M1(+E2)) γ to (33/2 ⁺) level; 33/2 from (³⁶ S,p3n γ).

Continued on next page (footnotes at end of table)

⁹⁷Ru Levels (continued)

E(level) [†]	J ^π ‡	T _{1/2}	XREF	Comments
6312.6 ^{&} 12			С	
6765.2 [@] 11	$(35/2^+)$		с	J^{π} : (E2) γ to (31/2 ⁺) level: 35/2 from (³⁶ S.p3n γ).
6777.3 16	(1)		C	
6889.9 ^a 10	$(37/2^+)$		С	J^{π} : (M1(+E2)) γ to (35/2 ⁺) level; 37/2 from (³⁶ S,p3n γ).
7380.4 11	$(39/2^+)$		С	J^{π} : (M1(+E2)) γ from (41/2 ⁺) level; 39/2 from (³⁶ S,p3n γ).
7462.8 [@] 11	$(39/2^+)$		С	J^{π} : (E2) γ to (35/2 ⁺) level; 39/2 from (³⁶ S,p3n γ).
7638.6 [#] 10	$(39/2^+)$	≤13.9 ps	С	J^{π} : (E2) γ to (35/2 ⁺) level; 39/2 from (³⁶ S,p3n γ).
		1		$T_{1/2}$: from (³⁶ S,p3n γ).
7678.5 12			С	
7908.2 13			C	- 26
8159.3 11	$(39/2^+)$		C	J^{π} : (M1(+E2)) γ to (37/2 ⁺) level; 39/2 from (³⁰ S,p3n γ).
8407.2 12			C	- 26
8468.4" 11	$(43/2^+)$		C	J^{π} : (E2) γ to (39/2 ⁺) level; 43/2 from (³⁰ S,p3n γ).
8489.1 ^{<i>a</i>} 11	$(41/2^+)$		C	J^{π} : (E2) γ to (37/2 ⁺) level; 41/2 from (³⁰ S,p3n γ).
8541.7 ^{^w} 12			C	
8621.3 12			C	26-
9204.3 [#] 11	$(45/2^+)$		C	J^{n} : (M1(+E2)) γ to (43/2 ⁺) level; 45/2 from (³⁰ S,p3n γ).
9383.0 ^¹ 13			C	
9423.1 13			C	
9440.7 13			C C	
9763.6 ^{<i>a</i>} 11	$(45/2^+)$		C	J^{π} : (E2) γ to (41/2 ⁺) level: 45/2 from (³⁶ S n ³ n γ).
10121.1 [#] 12	$(47/2^+)$		C	J^{π} : (M1(+E2)) γ to (45/2 ⁺) level: 47/2 from (³⁶ S, p3n γ).
10126.1 12	(,=)		c	
10622.7 12			С	
10829.4 12			С	- 26
10927.2 ^{<i>u</i>} 12	$(47/2^+)$		C	J^{π} : (M1(+E2)) γ to (45/2 ⁺) level; 47/2 from (³⁰ S,p3n γ).
11081.2" 12	$(49/2^+)$		C	J^{π} : (M1(+E2)) γ to (47/2 ⁺) level; 49/2 from (³⁶ S,p3n γ).
11288.0 13	$(51/2^+)$		C	J^{n} : (M1(+E2)) γ to (49/2 ⁺) level; 51/2 from (³⁰ S,p3n γ).
11508.5 13	(52/2+)		C	$\pi_{\rm e}$ (M1(+E2)) or to (51/2 ⁺) level, 52/2 from (365 m2m)
11/1/.0 14 12124 56 13	(33/2)		C	J^{-1} (M1(+E2)) γ to (51/2) level; 55/2 from (* 5,p51 γ). I^{π_2} (M1(+E2)) γ to (47/2 ⁺) level; 40/2 from (³⁶ S p3pa)
12124.5 13	(49/2)		C	J : $(W1(+E2))$ y to $(47/2)$ level, $49/2$ from (3 , $p3ny$).
12559.4 13			c	
12729.2 15			С	
12737.9 14			С	
12744.5 14			C	
12946.9 14			C	
13233.0 14 13338 1a 13	$(51/2^+)$		C	I^{π} : (M1(+E2)) or to (40/2 ⁺) level: 40/2 from (³⁶ S n ³ no)
13975.4 15	(31/2)		C	J : $(W1(+E2))$ y to $(49/2)$ level, $49/2$ from ($(3, p5ny)$).
14566.0 17			č	
15047.7 17			С	
15209.9 17			С	
15479.8 ^{<i>a</i>} 17			C	
16088.0 20			C	
10132.0 20			C	
1/4/1./ 17			<u> </u>	

[†] From least squares fit to $E\gamma$. [‡] Specific arguments for spin assignments are given if possible. However, if the spin assignments are those proposed in the reaction

97Ru Levels (continued)

data sets, based on combination of experimental results, then the specific data sets are referenced. For J^{π} values from (³⁶S,p3n γ): because of lack of evidence not all the values given in the dataset are adopted.

Band(A): sequence 1.

[@] Band(B): sequence 2. [&] Band(C): (11/2⁻) band.

^{*a*} Band(D): sequence 3.

 $\gamma(^{97}\text{Ru})$

Not all gammas reported and placed in their proposed level schemes by the various experimenters are included in the adopted gammas. For additional gammas, see the individual data sets. For unplaced γ 's see ⁹⁷Rh ε decay (30.7 min) and ⁹⁷Rh ε decay (46.2 min) datasets. Above 4730 keV excitation energy all γ data are from ⁶⁵Cu(³⁶S.p3n γ) dataset. $\frac{\mathrm{E}_f}{0.0} \quad \frac{\mathrm{J}_f^{\pi}}{5/2^+}$ Mult.# Comments E_i (level) 189.21 15 0.30 6 M1+E2 189.22 $3/2^{+}$ 0.061.3 $\alpha(K)=0.0527\ 22;\ \alpha(L)=0.0066\ 4;\ \alpha(M)=0.00121\ 7;$ $\alpha(N+..)=0.000203$ 11 α (N)=0.000194 *11*; α (O)=9.5×10⁻⁶ 4 B(M1)(W.u.)=0.0122 12; B(E2)(W.u.)=30 12 Mult., δ : from ⁹⁷Ru decay; δ =0.96 from (α ,2n γ) gives B(E2)(W.u.)=175 16. 421.54 $7/2^{+}$ $0.0 \quad 5/2^+$ 0.0080 10 $\alpha(K)=0.0070 \ 8; \ \alpha(L)=0.00085 \ 14; \ \alpha(M)=0.000155$ 421.55 5 100 M1 25; α (N+..)=2.6×10⁻⁵ 4 $\alpha(N)=2.5\times10^{-5}$ 4: $\alpha(O)=1.23\times10^{-6}$ 11 B(M1)(W.u.)=0.012 4 Mult.: from $\gamma(\theta)$ (¹²C,3n γ), (α ,2n γ); not pure E2 or higher multipolarity (RUL); L=4 to L=2 transition. 527.84 $3/2^{+}$ 338.4.3 22 5 189.22 3/2+ 0.0 5/2+ 527.85 5 100 5 610.79 $(1/2^+, 3/2, 5/2^+)$ 189.22 3/2+ 421.55 5 100 12 $0.0 \quad 5/2^+$ 610.58 18 4.3 6 189.22 3/2+ 771.38 $3/2^{+}$ 582.25 21 51 5 771.37 9 100 5 $0.0 \quad 5/2^+$ 840.19 $7/2^{+}$ 189.22 3/2+ 0.00255 $\alpha(K)=0.00222$ 4; $\alpha(L)=0.000266$ 4; 651.01 10 8.1 *I* [E2] $\alpha(M)=4.88\times10^{-5}$ 7; $\alpha(N+..)=8.23\times10^{-6}$ 12 $\alpha(N)=7.84\times10^{-6}$ 11; $\alpha(O)=3.92\times10^{-7}$ 6 (M1+E2)[&] $0.0 \quad 5/2^+$ $\alpha(K)=0.00120 4; \alpha(L)=0.000138 3;$ 840.13 9 100 0.00137 4 $\alpha(M)=2.53\times10^{-5}$ 5; $\alpha(N+..)=4.31\times10^{-6}$ 10 $\alpha(N)=4.09\times10^{-6}$ 9; $\alpha(O)=2.15\times10^{-7}$ 9 δ : -1.4 3 from $\gamma(\theta)$ (($\alpha, n\gamma$), (⁶Li, p2n\gamma)). (M1+E2)[&] 878.76 $9/2^{+}$ 457.30 10 8.7 9 421.54 7/2+ 0.0064 6 $\alpha(K)=0.0056\ 5;\ \alpha(L)=0.00067\ 9;\ \alpha(M)=0.000123$ 16; α (N+..)=2.07×10⁻⁵ 25 $\alpha(N)=1.98\times10^{-5}$ 24; $\alpha(O)=9.9\times10^{-7}$ 7 δ : -1.5 +4-5 ((α,nγ),(⁶Li,p2nγ)); 0.27 (α,2nγ). 1.19×10^{-3} $\alpha(K)=0.001046\ 15;\ \alpha(L)=0.0001220\ 17;$ 878.80 8 100.0 16 $0.0 \quad 5/2^+$ E2 $\alpha(M)=2.24\times10^{-5}$ 4; $\alpha(N+..)=3.79\times10^{-6}$ 6 $\alpha(N)=3.60\times10^{-6}$ 5; $\alpha(O)=1.86\times10^{-7}$ 3

$\gamma(^{97}\text{Ru})$ (continued)

E_i (level)	${ m J}^{\pi}_i$	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	J_f^π	Mult. [#]	α^{e}	Comments
								Mult.: from $\gamma(\theta)$ (¹² C,3n γ), ((α ,n γ),(⁶ Li,p2n γ)), (α ,2n γ).
908.29	1/2+	297.1 5	10 5	610.79	$(1/2^+, 3/2, 5/2^+)$			
		719.00 9	100 5	189.22	3/2+			
		908.35 8	67 5	0.0	5/2+	[E2]	1.10×10^{-3}	$\alpha(K)=0.000967 \ 14; \ \alpha(L)=0.0001126 \ 16; \\ \alpha(M)=2.06\times10^{-5} \ 3; \ \alpha(N+)=3.50\times10^{-6} \ 5 \\ \alpha(N)=3.33\times10^{-6} \ 5; \ \alpha(Q)=1.719\times10^{-7} \ 24$
1184.54	3/2+.5/2+	412.7.6	64	771.38	$3/2^{+}$			$u(10) = 5.55 \times 10^{-5}, u(0) = 1.717 \times 10^{-24}$
110 110 1	0/= ,0/=	995.36.8	86.6	189.22	$3/2^+$			
		1184.1 5	100 7	0.0	5/2+			
1199.11	11/2+	320.2 5	17.2 7	878.76	9/2+	(M1+E2)	0.018 4	$\alpha(K)=0.015 4; \alpha(L)=0.0019 6; \alpha(M)=0.00036 10; \alpha(N+)=6.0\times10^{-5} 16$
								$\alpha(N)=5.7\times10^{-5} 15; \alpha(O)=2.7\times10^{-5} 5$ Mult.: D+Q from ((α ,n γ),(⁶ Li,p2n γ)); D from (^{12}C ,3n γ), (⁷ Li,3n γ); $\Delta\pi=$ no from level
								scheme.
								δ: δ=0.13 (α, 2nγ); δ=-2.3+5-8
								$((\alpha,n\gamma),(^{6}\text{Li},p2n\gamma)).$
		777.44 18	100.0 <i>19</i>	421.54	7/2+	E2	1.61×10^{-3}	$\alpha(K)=0.001408\ 20;\ \alpha(L)=0.0001659\ 24;\alpha(M)=3.04\times10^{-5}\ 5;\ \alpha(N+)=5.15\times10^{-6}\ 8\alpha(N)=4.90\times10^{-6}\ 7;\ \alpha(O)=2.49\times10^{-7}\ 4$
								B(E2)(W.u.)=96
								Mult.: from $\gamma(\theta)$ (¹² C,3n γ), (α ,2n γ); Δ J=2 ((α ,n γ), (⁶ Li,p2n γ)).
1229.43	9/2+	351.0 4	28 4	878.76	9/2+			
		389.25 5	58 4	840.19	7/2+	D		Mult.: from $\gamma(\theta)$ (($\alpha,n\gamma$),(⁶ Li,p2n\gamma)).
		807.7 2	100 7	421.54	7/2+	D+Q		Mult., δ : δ =+3.1 +13-48 $\gamma(\theta)$ (($\alpha,n\gamma$),(⁶ Li,p2n\gamma)).
		1228.7 7	77 4	0.0	5/2+	E2	5.75×10 ⁻⁴	$\alpha(K)=0.000495 7; \alpha(L)=5.65\times10^{-5} 8; \alpha(M)=1.034\times10^{-5} 15; \alpha(N+)=1.355\times10^{-5} 22 \alpha(N)=1.673\times10^{-6} 24; \alpha(O)=8.82\times10^{-8} 13; \alpha(IPF)=1.179\times10^{-5} 21$
					I			Mult.: from $\gamma(\theta)$ (($\alpha,n\gamma$),($^{6}Li,p2n\gamma$)).
1376.87		605.54 18	19 3	771.38	3/2+			
		1187.38 5	1008 28	189.22	3/2+			
1542.02	$(7/2 0/2 11/2^{+})$	13/6.9 4	25 5	0.0	$\frac{3}{2}$			
1545.02	(1/2,9/2,11/2)	004.1 ð 702 84 19	14 ð 100 25	8/0.10	9/2 · 7/2+			
1595.6		702.04 10	100 23	878 76	9/2 ⁺			
1619.6	$(11/2)^+$	740.9 3	64 4	878.76	9/2 ⁺	(M1+E2)	0.00184 4	$\alpha(K)=0.00161 4; \alpha(L)=0.000187 3;$

						Adopt	ted Levels, Ga	mmas (continued)
							$\gamma(^{97}\text{Ru})$ (c	ontinued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α^{e}	Comments
								$\alpha(M)=3.43\times10^{-5}$ 5; $\alpha(N+)=5.83\times10^{-6}$ 9
								$\alpha(N)=5.54\times10^{-6}$ 8; $\alpha(O)=2.89\times10^{-7}$ 9
								Mult.: D+Q from $\gamma(\theta)$ (($\alpha,n\gamma$),(⁶ Li,p2n\gamma)), ($\alpha,2n\gamma$); $\Delta\pi$ =no from level scheme.
								δ : δ =-1.7 2 γ(θ) ((α,nγ),(⁶ Li,p2nγ)).
1619.6	$(11/2)^+$	1197.9 5	100 5	421.54	7/2+	E2	6.02×10^{-4}	$\alpha(K)=0.000522 \ 8; \ \alpha(L)=5.97\times10^{-5} \ 9; \ \alpha(M)=1.093\times10^{-5} \ 16; \ \alpha(N+)=9.10\times10^{-6} \ 15$
								$\alpha(N)=1.767\times10^{-6}\ 25;\ \alpha(O)=9.30\times10^{-8}\ 13;\ \alpha(IPF)=7.24\times10^{-6}\ 12$
								Mult.: from $\gamma(\theta)$ (($\alpha,n\gamma$),(⁶ Li,p2n\gamma)).
1650.9	(13/2+)	772.1 4	100	878.76	9/2+	(E2)	1.64×10^{-3}	α (K)=0.001433 21; α (L)=0.0001689 24; α (M)=3.10×10 ⁻⁵ 5; α (N+)=5.24×10 ⁻⁶ 8
								$\alpha(N)=4.98\times10^{-6}$ 7; $\alpha(O)=2.54\times10^{-7}$ 4
1825.7	(13/2)+	947.3 3	100	878.76	9/2+	E2	1.00×10^{-3}	α (K)=0.000877 <i>13</i> ; α (L)=0.0001018 <i>15</i> ; α (M)=1.86×10 ⁻⁵ <i>3</i> ; α (N+)=3.17×10 ⁻⁶ <i>5</i>
								$\alpha(N)=3.01\times10^{-6}$ 5; $\alpha(O)=1.560\times10^{-7}$ 22
								Mult.: from $\gamma(\theta)$ (¹² C,3n γ), ((α ,n γ),(⁶ Li,p2n γ)).
1845.69	(15/2)+	646.47 17	100	1199.11	11/2+	E2	0.00259	$\alpha(K)=0.00227 4; \alpha(L)=0.000271 4; \alpha(M)=4.98\times10^{-5} 7; \alpha(N+)=8.39\times10^{-6} 12$
								$\alpha(N)=7.99\times10^{-6}$ 12; $\alpha(O)=3.99\times10^{-7}$ 6
								B(E2)(W.u.)=14.9 17
								Mult.: from $\gamma(\theta)$ (¹² C,3n γ), ((α ,n γ),(⁶ Li,p2n γ)), (α ,2n γ).
1879.3	11/2-	650.0		1229.43	9/2+	[E1]	9.18×10 ⁻⁴	$\alpha(K)=0.000807 \ 12; \ \alpha(L)=9.13\times10^{-5} \ 13; \ \alpha(M)=1.669\times10^{-5} \ 24; \ \alpha(N+)=2.84\times10^{-6} \ 4$
								$\alpha(N)=2.70\times10^{-6} 4; \ \alpha(O)=1.419\times10^{-7} 20$
		680.3	42 3	1199.11	11/2+	(E1) ^{<i>a</i>}	8.31×10 ⁻⁴	$\alpha(K)=0.000731 \ 11; \ \alpha(L)=8.26\times10^{-5} \ 12; \ \alpha(M)=1.509\times10^{-5} \ 22; \ \alpha(N+)=2.57\times10^{-6} \ 4$
								$\alpha(N)=2.44\times10^{-6} 4; \ \alpha(O)=1.285\times10^{-7} 18$
		1000.5 3	100	878.76	9/2+	(E1) ^a	3.78×10^{-4}	$\alpha(K)=0.0003335; \alpha(L)=3.73\times10^{-5}6; \alpha(M)=6.81\times10^{-6}10; \alpha(N+)=1.162\times10^{-6}17$
	1							$\alpha(N)=1.103\times10^{-6}$ 16; $\alpha(O)=5.88\times10^{-8}$ 9
1932.32	7/2+	702.84 18	20 10	1229.43	9/2+			
		1053.70 24	100 7	878.76	9/2 ⁺			
		1092.1 3	38 4	840.19	1/2 ⁺			
		1511.0 4	387	421.54	1/2		4 (4, 10-4	(X) 0.00004(A (X) 0.77.10-5 A (0.0 5.07.10-6 c
		1742.5 13	15.5	189.22	3/2+	[E2]	4.64×10 ⁻⁴	$\alpha(\mathbf{K}) = 0.000246 \ 4; \ \alpha(\mathbf{L}) = 2.7 / \times 10^{-5} \ 4; \ \alpha(\mathbf{M}) = 5.0 / \times 10^{-6} \ 8; \\ \alpha(\mathbf{N}+) = 0.000185 \ 3 \\ \alpha(\mathbf{N}) = 8.22 \times 10^{-7} \ 12; \ \alpha(\mathbf{Q}) = 4.40 \times 10^{-8} \ 7; \ \alpha(\mathbf{M}) = 5.0 \times 10^{-6} \ 4; \$
		103176	36 0	0.0	5/2+			$\alpha(1)=0.22\times10^{-12}; \alpha(0)=4.40\times10^{-7}; \alpha(1PF)=0.0001843$
1000.07	(7/2)	1931.7 0	30 0 100 12	0.0 878 76	$0/2^+$			
	(1/2)	1111.47 24	100 12	0/0./0	7/4			

 ∞

$\gamma(^{97}\text{Ru})$ (continued)

E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	J_f^π	Mult. [#]	α^{e}	Comments
1990.07	(7/2)	1989.2 6	40 12	0.0	5/2+			
1998.6	7/2+,9/2+,11/2+	1158.3 4	100 10	840.19	7/2 ⁺			
2020.1		1577.1 4	83 13	421.54	$\frac{1}{2^{+}}$			
2020.1		821.0		1019.0	(11/2) $11/2^+$			
2150.9	7/2+	1272.9 9	25 5	878.76	9/2 ⁺			
	,	1310.1 6	100 13	840.19	7/2+			
		1730.4 13	13 7	421.54	7/2+		4	
		1962.4 15	77	189.22	3/2+	[E2]	5.10×10^{-4}	$\alpha(K)=0.000197 \ 3; \ \alpha(L)=2.21\times10^{-5} \ 4; \ \alpha(M)=4.04\times10^{-6} \ 6; \ \alpha(N+)=0.000287 \ 4$
								$\alpha(N)=6.56\times10^{-7}$ 10; $\alpha(O)=3.52\times10^{-8}$ 5; $\alpha(IPF)=0.000286$ 4
2197.70	3/2-	820.9 <i>3</i>	9.1 9	1376.87			4	
		1013.33 17	68 4	1184.54	3/2+,5/2+	[E1]	3.69×10^{-4}	$\alpha(K)=0.000325 5; \alpha(L)=3.64\times10^{-5} 5; \alpha(M)=6.64\times10^{-6}$
								$10; \alpha(N+)=1.134\times10^{-6}$ 16
		1406 40 24	28.2	771.20	2/2+	EF 11	2 82 10-4	$\alpha(N) = 1.076 \times 10^{-6}$ 15; $\alpha(O) = 5.73 \times 10^{-6}$ 8 (W) 0.0001759.25 (U) 1.0(110 ⁻⁵) 2 (W) 2.57.10 ⁻⁶
		1426.40 24	28 2	//1.38	3/2	[EI]	3.83×10	$\alpha(K)=0.0001758\ 23;\ \alpha(L)=1.96\times10^{-5}\ 3;\ \alpha(M)=3.57\times10^{-5}\ 5;\ \alpha(N+)=0.000184\ 3^{-5}$
		1506 66 24	100 ((10.70	(1,10+,2,12,5,10+)			$\alpha(N)=5.79\times10^{-7}$ 9; $\alpha(O)=3.11\times10^{-8}$ 5; $\alpha(IPF)=0.000184$ 3
		1586.66 24	100 0	610.79	$(1/2^+, 3/2, 5/2^+)$	IT:11	7.25×10^{-4}	$(K) = 0.0001014$ 15. $(L) = 1.100 \times 10^{-5}$ 16.
		2008.1 0	48 3	189.22	3/2	[E1]	7.35×10	$\alpha(\mathbf{K}) = 0.0001014 \ IS; \ \alpha(\mathbf{L}) = 1.122 \times 10^{-5} \ IO;$ $\alpha(\mathbf{M}) = 2.05 \times 10^{-6} \ S; \ \alpha(\mathbf{M} + 1) = 0.000621 \ O$
								$\alpha(N)=3.32\times10^{-7}$ 5. $\alpha(\Omega)=1.79\times10^{-8}$ 3. $\alpha(IPF)=0.000620.9$
		2197.2.5	8.3 10	0.0	$5/2^{+}$	[E1]	8.51×10^{-4}	$\alpha(K) = 8.84 \times 10^{-5}$ 13: $\alpha(L) = 9.78 \times 10^{-6}$ 14:
					- /			$\alpha(M)=1.785\times10^{-6} 25; \alpha(N+)=0.000751 11$
								$\alpha(N)=2.90\times10^{-7} 4; \alpha(O)=1.565\times10^{-8} 22;$
								α (IPF)=0.000751 11
2245.89	3/2-	869.2 6	2.9 6	1376.87				5
		1060.0 ^J 10	2.0 8	1184.54	3/2+,5/2+	[E1]	3.39×10 ⁻⁴	$\alpha(K)=0.000298 5; \alpha(L)=3.34\times10^{-5} 5; \alpha(M)=6.10\times10^{-6} 9; \alpha(N+)=1.041\times10^{-6} 15$
								$\alpha(N) = 9.88 \times 10^{-7} \ 14; \ \alpha(O) = 5.27 \times 10^{-8} \ 8$
		1337.5 4	6.6 6	908.29	1/2+	[E1]	3.47×10^{-4}	$\alpha(K)=0.000196 \ 3; \ \alpha(L)=2.19\times10^{-5} \ 3; \ \alpha(M)=3.99\times10^{-6} \ 6; \ \alpha(N+)=0.0001247 \ 18$
								α (N)=6.47×10 ⁻⁷ 9; α (O)=3.47×10 ⁻⁸ 5; α (IPF)=0.0001240 18
		1474.6 4	12.0 12	771.38	3/2+	[E1]	4.08×10^{-4}	α (K)=0.0001662 24; α (L)=1.85×10 ⁻⁵ 3; α (M)=3.38×10 ⁻⁶ 5; α (N+)=0.000220 3
								$\alpha(N)=5.47\times10^{-7}$ 8; $\alpha(O)=2.94\times10^{-8}$ 5; $\alpha(IPF)=0.000219$ 3
		1718.5 4	18 2	527.84	3/2+	[E1]	5.55×10^{-4}	$\alpha(K)=0.0001294 \ 19; \ \alpha(L)=1.436\times 10^{-5} \ 21;$

					Ad	opted Levels	, Gammas (co	ntinued)
						γ (⁹⁷ Ru) (continued)	
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	J_f^π	Mult. [#]	α^{e}	Comments
2245.89	3/2-	2245.6 5	100	0.0	5/2+	[E1]	8.80×10 ⁻⁴	$\alpha(M)=2.62\times10^{-6} 4; \alpha(N+)=0.000408 6$ $\alpha(N)=4.25\times10^{-7} 6; \alpha(O)=2.29\times10^{-8} 4; \alpha(IPF)=0.000408 6$ $\alpha(K)=8.56\times10^{-5} 12; \alpha(L)=9.46\times10^{-6} 14; \alpha(M)=1.727\times10^{-6} 25; \alpha(N+)=0.000783 11$ $\alpha(N)=0.000783 11 10^{-7} 4 0000783 11$
2300.7	1/2,3/2	1117.2 <i>10</i> 2110.9 7	35 <i>17</i> 100 <i>14</i>	1184.54 189.22	$3/2^+, 5/2^+$ $3/2^+$			$\alpha(N)=2.80\times10^{-7}$ 4; $\alpha(O)=1.514\times10^{-6}$ 22; $\alpha(IPF)=0.000783$ 11
2312.78	1/2-,3/2-	1785.1 4	49 4	527.84	3/2+	[E1]	5.96×10 ⁻⁴	$\alpha(K)=0.0001218\ 17;\ \alpha(L)=1.350\times10^{-5}\ 19;\ \alpha(M)=2.46\times10^{-6}\ 4;$ $\alpha(N+)=0.000458\ 7$
		2123.2 8	100 8	189.22	3/2+	[E1]	8.06×10 ⁻⁴	$\alpha(N)=4.00\times10^{-7}$ 6; $\alpha(O)=2.15\times10^{-8}$ 3; $\alpha(IPF)=0.000458$ 7 $\alpha(K)=9.31\times10^{-5}$ 13; $\alpha(L)=1.030\times10^{-5}$ 15; $\alpha(M)=1.88\times10^{-6}$ 3; $\alpha(N+)=0.000701$ 10 $\alpha(N)=3.05\times10^{-7}$ 5; $\alpha(O)=1.647\times10^{-8}$ 23; $\alpha(IPF)=0.000701$ 10
2505.6	(17/2 ⁺)	854.7 4	100	1650.9	(13/2 ⁺)	(E2)	1.28×10 ⁻³	$\alpha(\mathbf{N})=3.65\times10^{-5}, \alpha(\mathbf{O})=1.647\times10^{-2}, 23, \alpha(\mathbf{H}^{-1})=0.00010110^{-1}$ $\alpha(\mathbf{K})=0.001117 \ 16; \alpha(\mathbf{L})=0.0001306 \ 19; \alpha(\mathbf{M})=2.39\times10^{-5} \ 4; \alpha(\mathbf{N}+)=4.06\times10^{-6} \ 6$ $\alpha(\mathbf{N})=3.86\times10^{-6} \ 6; \alpha(\mathbf{O})=1.98\times10^{-7} \ 3$
2545.54	(17/2+)	699.77 <i>17</i>	100 ^c 10	1845.69	(15/2)+	(M1+E2)	0.00211	Mult.: from DCO in ⁶⁵ Cu(³⁶ S,p3n γ). $\alpha(K)=0.00185 \ 3; \ \alpha(L)=0.000216 \ 5; \ \alpha(M)=3.95\times10^{-5} \ 8; \ \alpha(N+)=6.71\times10^{-6} \ 11$ $\alpha(N)=6.38\times10^{-6} \ 11; \ \alpha(O)=3.32\times10^{-7} \ 9$ Mult.: from $\gamma(\theta)$ (⁷ Li,3n γ), ((α ,n γ),(⁶ Li,p2n γ)), (α ,2n γ); D,E2 from RUL; $\Delta\pi$ =no from level scheme. $S_{12} = 20 \times 4.6 \ (\alpha + m^2) \ (M + m^2 - m^2) \ 0.16 \ (\alpha + 2m^2)$
		720.5 4	1.5 6	1825.7	$(13/2)^+$			$o: -2.0 + 4 - o((\alpha, \pi\gamma), (^{*}L1, p2\pi\gamma)), 0.10(\alpha, 2\pi\gamma).$
2552.8	15/2-	673.5	100 8	1879.3	11/2-	E2	0.00233	$\alpha(K)=0.00203 \ 3; \ \alpha(L)=0.000243 \ 4; \ \alpha(M)=4.45\times10^{-5} \ 7; \\ \alpha(N+)=7.51\times10^{-6} \ 11 \\ \alpha(N)=7.15\times10^{-6} \ 10; \ \alpha(O)=3.58\times10^{-7} \ 5$
		727.0	53 12	1825.7	(13/2)+	(E1)	7.20×10 ⁻⁴	Mult.: from $\gamma(\theta)$ (($\alpha, n\gamma$), ($^{6}Li, p2n\gamma$)). $\alpha(K)=0.000633 \ 9; \ \alpha(L)=7.15\times10^{-5} \ 10; \ \alpha(M)=1.306\times10^{-5} \ 19; \ \alpha(N+)=2.22\times10^{-6} \ 4 \ \alpha(N)=2.11\times10^{-6} \ 3; \ \alpha(O)=1.115\times10^{-7} \ 16 \ Mult.: \ \Delta J=1, \ \delta\approx0 \ from \ \gamma(\theta) \ ((\alpha, n\gamma), ({}^{6}Li, p2n\gamma)); \ \Delta\pi=yes$
2564.90	3/2-	252.12 <i>18</i> 367.3 <i>3</i> 1187.3 ⁸ 5	36 <i>3</i> 21 <i>2</i> 67 ⁸ 19	2312.78 2197.70 1376.87	1/2 ⁻ ,3/2 ⁻ 3/2 ⁻			Irom level scheme.
		1656.9 <i>3</i>	67 6	908.29	1/2+	[E1]	5.17×10 ⁻⁴	$ \begin{aligned} &\alpha(\mathrm{K}) = 0.0001372 \ 20; \ \alpha(\mathrm{L}) = 1.523 \times 10^{-5} \ 22; \ \alpha(\mathrm{M}) = 2.78 \times 10^{-6} \ 4; \\ &\alpha(\mathrm{N}+) = 0.000361 \ 5 \\ &\alpha(\mathrm{N}) = 4.51 \times 10^{-7} \ 7; \ \alpha(\mathrm{O}) = 2.43 \times 10^{-8} \ 4; \ \alpha(\mathrm{IPF}) = 0.000361 \ 5 \end{aligned} $

					Adopted Leve	els, Gamma	as (continued)	
					$\gamma(^{97})$	Ru) (contir	nued)	
E _i (level)	J^π_i	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^π	Mult. [#]	α^{e}	Comments
2564.90	3/2-	2036.8 ^g 5	100 ^g 24	527.84	3/2+	[E1]	7.53×10 ⁻⁴	$\begin{aligned} \alpha(\text{K}) &= 9.92 \times 10^{-5} \ 14; \ \alpha(\text{L}) = 1.098 \times 10^{-5} \ 16; \\ \alpha(\text{M}) &= 2.00 \times 10^{-6} \ 3; \ \alpha(\text{N}+) = 0.000641 \ 9 \\ \alpha(\text{N}) &= 3.25 \times 10^{-7} \ 5; \ \alpha(\text{O}) = 1.755 \times 10^{-8} \ 25; \\ \alpha(\text{IPF}) &= 0.000641 \ 9 \end{aligned}$
		2375.7 5	35 <i>3</i>	189.22	3/2+	[E1]	9.55×10 ⁻⁴	$\alpha(K) = 7.88 \times 10^{-5} \ 11; \ \alpha(L) = 8.70 \times 10^{-6} \ 13; \alpha(M) = 1.588 \times 10^{-6} \ 23; \ \alpha(N+) = 0.000866 \ 13 \alpha(N) = 2.58 \times 10^{-7} \ 4; \ \alpha(O) = 1.393 \times 10^{-8} \ 20; \alpha(IPF) = 0.000866 \ 13$
		2564.0 9	64	0.0	5/2+	[E1]	1.06×10 ⁻³	$\alpha(K) = 7.05 \times 10^{-5} \ 10; \ \alpha(L) = 7.78 \times 10^{-6} \ 11; \\ \alpha(M) = 1.420 \times 10^{-6} \ 20; \ \alpha(N+) = 0.000982 \ 14 \\ \alpha(N) = 2.31 \times 10^{-7} \ 4; \ \alpha(O) = 1.247 \times 10^{-8} \ 18; \\ \alpha(IPF) = 0.000981 \ 14$
2576.0	1/2-,3/2-	1965.0 5	100 10	610.79	$(1/2^+, 3/2, 5/2^+)$			
2501 4	7/2+0/2+11/2+	2576.6 8	30^{1}_{71}	0.0	$5/2^+$			
2391.4	//2 ,9/2 ,11/2	1712.9 5	98 20	878.76	9/2 ⁺			
		1751.2 6	100 21	840.19	7/2+			
2596.2	15/2-	716.9 3	100	1879.3	11/2-	E2	0.00198	$\alpha(K)=0.001728 \ 25; \ \alpha(L)=0.000205 \ 3; \\ \alpha(M)=3.76\times10^{-5} \ 6; \ \alpha(N+)=6.35\times10^{-6} \ 9 \\ \alpha(N)=6.05\times10^{-6} \ 9; \ \alpha(O)=3.05\times10^{-7} \ 5 \\ Mult : \ from \ \gamma(\theta) \ (^{7}L \ i \ 3n\chi)$
2598.7	(17/2 ⁺)	773.0	100	1825.7	(13/2)+	(E2)	1.63×10 ⁻³	$\alpha(K)=0.001429\ 20;\ \alpha(L)=0.0001684\ 24;\alpha(M)=3.09\times10^{-5}\ 5;\ \alpha(N+)=5.22\times10^{-6}\ 8\alpha(N)=4.97\times10^{-6}\ 7;\ \alpha(O)=2.53\times10^{-7}\ 4$ Mult : from $\alpha(\theta)\ (^{12}C\ 3nx)$
2640.4	(17/2)+	814.6 <i>3</i>	100	1825.7	(13/2)+	E2	1.43×10 ⁻³	$\alpha(K)=0.001255 \ 18; \ \alpha(L)=0.0001473 \ 21; \\ \alpha(M)=2.70\times10^{-5} \ 4; \ \alpha(N+)=4.57\times10^{-6} \ 7 \\ \alpha(N)=4.35\times10^{-6} \ 7; \ \alpha(O)=2.23\times10^{-7} \ 4 \\ M \ k = \int_{-\infty}^{\infty} \alpha(D) = $
2647.82	3/2-	1463.2 <i>4</i>	37 3	1184.54	3/2+,5/2+	[E1]	4.02×10 ⁻⁴	$\alpha(K) = 0.0001684 \ 24; \ \alpha(L) = 1.87 \times 10^{-5} \ 3; \alpha(M) = 3.42 \times 10^{-6} \ 5; \ \alpha(N+) = 0.000211 \ 3 \alpha(N) = 5.55 \times 10^{-7} \ 8; \ \alpha(O) = 2.98 \times 10^{-8} \ 5; (ME) = 0.000210 \ 3 $
		1739.7 5	35 6	908.29	1/2+	[E1]	5.68×10 ⁻⁴	$\alpha(\text{IFF})=0.000210.5$ $\alpha(\text{K})=0.0001269.18; \ \alpha(\text{L})=1.407\times10^{-5}.20;$ $\alpha(\text{M})=2.57\times10^{-6}.4; \ \alpha(\text{N}+)=0.000424.6$ $\alpha(\text{N})=4.17\times10^{-7}.6; \ \alpha(\text{O})=2.24\times10^{-8}.4;$ $\alpha(\text{M})=0.000424.6$
		1876.5 5	4.6 15	771.38	3/2+	[E1]	6.53×10 ⁻⁴	α (IPF)=0.000424 6 α (K)=0.0001126 <i>16</i> ; α (L)=1.247×10 ⁻⁵ <i>18</i> ;

From ENSDF

Ŧ

L

					Adopt	ted Levels, Ga	mmas (continu	ued)		
						$\gamma(^{97}\text{Ru})$ (co	ontinued)			
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	α^{e}	Comments		
2617.02	2/2-	2026 08 5	218 0	(10.50				$\begin{array}{c} \alpha(\mathrm{M}) = 2.28 \times 10^{-6} \ 4; \ \alpha(\mathrm{N}+) = 0.000526 \ 8\\ \alpha(\mathrm{N}) = 3.69 \times 10^{-7} \ 6; \ \alpha(\mathrm{O}) = 1.99 \times 10^{-8} \ 3; \\ \alpha(\mathrm{IPF}) = 0.000525 \ 8 \end{array}$		
2647.82	3/2-	2036.8 ⁸ 5 2458.7 9	348 9 5 3	610.79 189.22	(1/2 ⁺ ,3/2,5/2 ⁺) 3/2 ⁺	[E1]	1.00×10^{-3}	$\begin{aligned} &\alpha(\mathbf{K}) = 7.49 \times 10^{-5} \ 11; \ \alpha(\mathbf{L}) = 8.27 \times 10^{-6} \ 12; \\ &\alpha(\mathbf{M}) = 1.510 \times 10^{-6} \ 22; \ \alpha(\mathbf{N}+) = 0.000918 \ 13 \\ &\alpha(\mathbf{N}) = 2.45 \times 10^{-7} \ 4; \ \alpha(\mathbf{O}) = 1.325 \times 10^{-8} \ 19; \\ &\alpha(\mathbf{IPF}) = 0.000917 \ 13 \end{aligned}$		
		2647.8 5	100 8	0.0	5/2+	[E1]	1.11×10 ⁻³	$\begin{aligned} &\alpha(\mathrm{K}) = 6.73 \times 10^{-5} \ 10; \ \alpha(\mathrm{L}) = 7.43 \times 10^{-6} \ 11; \\ &\alpha(\mathrm{M}) = 1.356 \times 10^{-6} \ 19; \ \alpha(\mathrm{N}+) = 0.001032 \ 15 \\ &\alpha(\mathrm{N}) = 2.20 \times 10^{-7} \ 3; \ \alpha(\mathrm{O}) = 1.191 \times 10^{-8} \ 17; \\ &\alpha(\mathrm{IPF}) = 0.001031 \ 15 \end{aligned}$		
2660.4	(19/2+)	154.8 <i>4</i>	100	2505.6	(17/2 ⁺)	(M1(+E2))	0.18 9	$\alpha(K)=0.15 \ 8; \ \alpha(L)=0.023 \ 14; \ \alpha(M)=0.004 \ 3; \\ \alpha(N+)=0.0007 \ 4 \\ \alpha(N)=0.0007 \ 4; \ \alpha(O)=2.5\times10^{-5} \ 10 \\ M \ (h = 0.0007 \ 4; \ \alpha(O)=2.5\times10^{-5} \ 10 \ 4; \ \alpha(O)=2.5\times10^{-5} \ 10 \ 4; $		
2739.1	(21/2+)	(98)		2652	1/2+	[E2]	1.399	Mult.: from DCO in ⁶⁵ Cu(⁵⁰ S,p3n γ). α (K)=1.105 <i>I6</i> ; α (L)=0.242 <i>4</i> ; α (M)=0.0454 <i>7</i> ; α (N+)=0.00696 <i>I0</i> α (N)=0.00680 <i>I0</i> ; α (O)=0.0001607 <i>23</i>		
		193.53 <i>17</i>	100 ^c 10	2545.54	(17/2 ⁺)	E2	0.1222	$\alpha(K)=0.1032 \ 15; \ \alpha(L)=0.01559 \ 23; \ \alpha(M)=0.00289 \ 5; \\ \alpha(N+)=0.000465 \ 7 \\ \alpha(N)=0.000448 \ 7; \ \alpha(O)=1.653\times10^{-5} \ 24 \\ B(E2)(W.u.)=9.0 \ 13 \\ Mult : \ from \ \gamma(\theta) \ ((\alpha \ p_2)) \ (^{6}Lip(2p_2)) \ (\alpha \ 2p_2))$		
2743.1	(17/2 ⁺)	897.4		1845.69	(15/2)+	(M1+E2) ^{&}	0.00117 4	$\alpha(\mathbf{K})=0.00103 \ 4; \ \alpha(\mathbf{L})=0.000118 \ 3; \ \alpha(\mathbf{M})=2.17\times10^{-5} \ 6; \\ \alpha(\mathbf{N}+)=3.69\times10^{-6} \ 11 \\ \alpha(\mathbf{N})=3.51\times10^{-6} \ 10; \ \alpha(\mathbf{O})=1.85\times10^{-7} \ 9 \\ \delta; \ -3.8 \ +25-14 \ \text{from } \gamma(\theta) \ ((\alpha,\mathbf{n}\gamma), (^{6}\text{Li},\mathbf{p}2\mathbf{n}\gamma)).$		
2754.7	7/2+	764.9 <i>6</i> 1876.5 <i>5</i>	50 25 100 25	1990.07 878.76	(7/2) 9/2 ⁺					
		2563.7	35 25	189.22	3/2+	[E2]	7.14×10 ⁻⁴	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0001225 \ 18; \ \alpha(\mathbf{L}) = 1.364 \times 10^{-5} \ 20; \\ &\alpha(\mathbf{M}) = 2.49 \times 10^{-6} \ 4; \ \alpha(\mathbf{N}+) = 0.000576 \ 8 \\ &\alpha(\mathbf{N}) = 4.05 \times 10^{-7} \ 6; \ \alpha(\mathbf{O}) = 2.19 \times 10^{-8} \ 3; \\ &\alpha(\mathbf{IPF}) = 0.000575 \ 8 \end{aligned}$		
2759.4	(19/2)+	2753.8 8 213.90 <i>21</i>	50 25 22 4	0.0 2545.54	5/2 ⁺ (17/2 ⁺)	(M1(+E2))	0.063 24	α (K)=0.054 20; α (L)=0.007 4; α (M)=0.0014 7; α (N+)=0.00022 10 α (N)=0.00021 10; α (O)=9.E-6 3 Mult.: from DCO in ⁶⁵ Cu(³⁶ S,p3n γ).		

	Adopted Levels, Gammas (continued)											
					γ (⁹⁷ F	Ru) (continued)						
E _i (level)	${ m J}^{\pi}_i$	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_{f}	${ m J}_f^\pi$	Mult. [#]	α^{e}	Comments				
2759.4	(19/2)+	913.6 4	100 7	1845.69	(15/2)+	E2	1.09×10 ⁻³	$\alpha(K)=0.000954 \ 14; \ \alpha(L)=0.0001110 \ 16; \\ \alpha(M)=2.03\times10^{-5} \ 3; \ \alpha(N+)=3.45\times10^{-6} \ 5 \\ \alpha(N)=3.28\times10^{-6} \ 5; \ \alpha(O)=1.696\times10^{-7} \ 24 \\ \text{Mult.: from } \gamma(\theta) \ (^{7}\text{Li},3n\gamma), \\ ((\alpha \text{ nv}) \ (^{6}\text{Li} \text{ n } 2n\gamma)) $				
2760.4	7/2+,9/2+,11/2+	1881.4 <i>9</i> 1920.0 <i>14</i> 2338.9 <i>5</i>	80 <i>40</i> 60 <i>40</i> 100 <i>24</i>	878.76 840.19 421.54	9/2 ⁺ 7/2 ⁺ 7/2 ⁺			$((\alpha, n_f), (D, p, 2n_f)).$				
2762.8	(19/2+)	217.3 ^b 4	100	2545.54	(17/2 ⁺)	(M1(+E2))	0.059 22	α (K)=0.051 <i>18</i> ; α (L)=0.007 <i>3</i> ; α (M)=0.0013 <i>6</i> ; α (N+)=0.00021 <i>9</i> α (N)=0.00020 <i>9</i> ; α (O)=9.E-6 <i>3</i>				
2764.77	1/2-,3/2-	567.24 24	75 7	2197.70	3/2-							
		2152.1 ^d 6	100 13	610.79	$(1/2^+, 3/2, 5/2^+)$							
		2237.1 6	79 13	527.84	3/2+	[E1]	8.75×10 ⁻⁴	$\alpha(K)=8.61\times10^{-5} 12; \ \alpha(L)=9.52\times10^{-6} 14; \\ \alpha(M)=1.737\times10^{-6} 25; \ \alpha(N+)=0.000777 11 \\ \alpha(N)=2.82\times10^{-7} 4; \ \alpha(O)=1.523\times10^{-8} 22; \\ \alpha(IPF)=0.000777 11$				
		2576.6 ^f 8	25 5 6	189.22	3/2+							
2766.2	7/2+,9/2+,11/2+	1888.0 6	44 22	878.76	9/2+							
		1925.1 7	100 31	840.19	7/2+							
2796.9	1/2-,3/2-	551.5 6	92	2245.89	3/2-							
		1421.1 8 1888.0 6	<11 2 <16	908.29	1/2+	[E1]	6.60×10^{-4}	$\alpha(K)=0.0001115 \ 16; \ \alpha(L)=1.235\times10^{-5} \ 18;$ $\alpha(M)=2.26\times10^{-6} \ 4; \ \alpha(N+)=0.000534 \ 8$ $\alpha(N)=3.66\times10^{-7} \ 6; \ \alpha(O)=1.97\times10^{-8} \ 3;$ $\alpha(IPF)=0.000534 \ 8$				
		2608.0 5	100 11	189.22	3/2+	[E1]	1.09×10 ⁻³	$\alpha(K) = 6.88 \times 10^{-5} \ 10; \ \alpha(L) = 7.59 \times 10^{-6} \ 11; \alpha(M) = 1.386 \times 10^{-6} \ 20; \ \alpha(N+) = 0.001008 \ 15 \alpha(N) = 2.25 \times 10^{-7} \ 4; \ \alpha(O) = 1.217 \times 10^{-8} \ 17; \alpha(IPF) = 0.001008 \ 15$				
2929.76	3/2-	617.2 <i>4</i> 683.8 <i>5</i> 731.8 <i>3</i> 2318.5 <i>8</i> 2930.6 <i>6</i>	38 15 46 15 68 9 23 15 100 23	2312.78 2245.89 2197.70 610.79 0.0	$ \begin{array}{c} 1/2^{-}, 3/2^{-} \\ 3/2^{-} \\ (1/2^{+}, 3/2, 5/2^{+}) \\ 5/2^{+} \end{array} $	[E1]	1.25×10 ⁻³	$\alpha(K)=5.84\times10^{-5}$ 9; $\alpha(L)=6.43\times10^{-6}$ 9;				
2966.4	7/2+	967.9 6	100 <i>36</i>	1998.6	7/2+,9/2+,11/2+			$\alpha(M)=1.173\times10^{-6} \ 17; \ \alpha(N+)=0.001183 \ 17$ $\alpha(N)=1.90\times10^{-7} \ 3; \ \alpha(O)=1.032\times10^{-8} \ 15;$ $\alpha(IPF)=0.001183 \ 17$				

13

					-	Adopted Lev	vels, Gan	nmas (continu	ued)		
γ ⁽⁹⁷ Ru) (continued)											
E _i (level)	\mathbf{J}_i^π	${\rm E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{@}$	α^{e}	Comments		
2966.4	7/2+	2777.0 10	29 18	189.22	3/2+	[E2]		7.95×10 ⁻⁴	$ \begin{array}{c} \alpha(\mathrm{K}) = 0.0001068 \ 15; \ \alpha(\mathrm{L}) = 1.188 \times 10^{-5} \ 17; \\ \alpha(\mathrm{M}) = 2.17 \times 10^{-6} \ 3; \ \alpha(\mathrm{N}+) = 0.000674 \ 10 \\ \alpha(\mathrm{N}) = 3.52 \times 10^{-7} \ 5; \ \alpha(\mathrm{O}) = 1.90 \times 10^{-8} \ 3; \ \alpha(\mathrm{IPF}) = 0.000673 \\ 10 \end{array} $		
3225.5	(19/2-)	672.7 ^b 4	100	2552.8	15/2-	(E2)		0.00233	Mult.: from DCO in ⁶⁵ Cu(³⁶ S,p3n γ). α (K)=0.00204 3; α (L)=0.000243 4; α (M)=4.46×10 ⁻⁵ 7; α (N+)=7.53×10 ⁻⁶ 11 α (N)=7.17×10 ⁻⁶ 11; α (Q)=3.60×10 ⁻⁷ 5		
3264.9	3/2-	1888.0 ^f 6	<350 ^f	1376.87					$u(n) = 1.17 \times 10^{-11}, u(0) = 3.00 \times 10^{-5}$		
	-,-	2492.9 9	50 40	771.38	3/2+	[E1]		1.02×10 ⁻³	$\alpha(K)=7.34\times10^{-5} 11; \ \alpha(L)=8.11\times10^{-6} 12; \alpha(M)=1.480\times10^{-6} 21; \ \alpha(N+)=0.000939 14 \alpha(N)=2.40\times10^{-7} 4; \ \alpha(O)=1.299\times10^{-8} 19; \alpha(IPF)=0.000938 14$		
		2737.6 9	100 50	527.84	3/2+	[E1]		1.16×10 ⁻³	$\alpha(\text{M}=1)^{-0.000} \frac{1}{9}; \alpha(\text{L})=7.08 \times 10^{-6} \ 10; \\ \alpha(\text{M})=1.292 \times 10^{-6} \ 19; \alpha(\text{N}+)=0.001083 \ 16 \\ \alpha(\text{N})=2.10 \times 10^{-7} \ 3; \alpha(\text{O})=1.136 \times 10^{-8} \ 16; \\ \alpha(\text{RE})=0.001083 \ 16$		
		3076.2 10	100 50	189.22	3/2+	[E1]		1.32×10 ⁻³	$\alpha(\text{M}=1)=0.001035 \ 10^{-6} \ \alpha(\text{L})=6.01\times10^{-6} \ 9;$ $\alpha(\text{M})=1.097\times10^{-6} \ 16; \ \alpha(\text{N}+)=0.001254 \ 18$ $\alpha(\text{N})=1.780\times10^{-7} \ 25; \ \alpha(\text{O})=9.65\times10^{-9} \ 14;$ $\alpha(\text{PE})=0.001254 \ 18$		
		3264.0 10	50 35	0.0	5/2+	[E1]		1.41×10 ⁻³	$\alpha(\text{M}) = 5.03 \times 10^{-5} \ 7; \ \alpha(\text{L}) = 5.54 \times 10^{-6} \ 8; \\ \alpha(\text{M}) = 1.010 \times 10^{-6} \ 15; \ \alpha(\text{N}+) = 0.001349 \ 19 \\ \alpha(\text{N}) = 1.640 \times 10^{-7} \ 23; \ \alpha(\text{O}) = 8.89 \times 10^{-9} \ 13; \\ \alpha(\text{IPF}) = 0.001349 \ 19$		
3269.5	(19/2-)	673.3 <i>3</i>	100	2596.2	15/2-	E2		0.00233	$\alpha(K) = 0.00203 \ 3; \ \alpha(L) = 0.000243 \ 4; \ \alpha(M) = 4.45 \times 10^{-5} \ 7; \\ \alpha(N+) = 7.51 \times 10^{-6} \ 11 \\ \alpha(N) = 7.15 \times 10^{-6} \ 10; \ \alpha(O) = 3.59 \times 10^{-7} \ 5 \\ Mult : \ from \ \gamma(\theta) \ (^{7}\text{Li} \ 3n\gamma)$		
3296.1	1/2-,3/2-	2767.1 8	100 33	527.84	3/2+	[E1]		1.17×10 ⁻³	$\alpha(K) = 6.33 \times 10^{-5} \ 9; \ \alpha(L) = 6.98 \times 10^{-6} \ 10; \alpha(M) = 1.273 \times 10^{-6} \ 18; \ \alpha(N+) = 0.001099 \ 16 \alpha(N) = 2.07 \times 10^{-7} \ 3; \ \alpha(O) = 1.119 \times 10^{-8} \ 16; \alpha(IPF) = 0.001099 \ 16$		
		3108.0 8	95 18	189.22	3/2+	[E1]		1.33×10 ⁻³	$\alpha(K) = 5.38 \times 10^{-5} \ 8; \ \alpha(L) = 5.93 \times 10^{-6} \ 9; \\ \alpha(M) = 1.081 \times 10^{-6} \ 16; \ \alpha(N+) = 0.001270 \ 18 \\ \alpha(N) = 1.755 \times 10^{-7} \ 25; \ \alpha(O) = 9.51 \times 10^{-9} \ 14; \\ \alpha(IPF) = 0.001270 \ 18$		
3303.1	(21/2 ⁺)	642.6 ^b 4	100	2660.4	(19/2 ⁺)	(M1(+E2))	1	0.00261 5	$\alpha(K)=0.00228 \ 4; \ \alpha(L)=0.000268 \ 10; \ \alpha(M)=4.91\times10^{-5}$		

From ENSDF

⁹⁷₄₄Ru₅₃-14

L

Adopted Levels, Gammas (continued)											
						$\gamma(^{97}\text{Ru})$ (cont	tinued)				
E _i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult. [#]	α ^e	Comments			
								$17; \ \alpha(\text{N}+)=8.32\times10^{-6} \ 24$ $\alpha(\text{N})=7.92\times10^{-6} \ 24; \ \alpha(\text{O})=4.09\times10^{-7} \ 7$ Mult.: from DCO in ⁶⁵ Cu(³⁶ S,p3ny).			
3368.8 3374.7	7/2 ⁺ ,9/2 ⁺ ,11/2 ⁺ 3/2 ⁻	2947.2 6 578.6 6 1060.9 <i>10</i>	100 22 7 19 8	421.54 2796.9 2312.78	7/2 ⁺ 1/2 ⁻ ,3/2 ⁻ 1/2 ⁻ ,3/2 ⁻						
		3185.5 7	16 3	189.22	3/2+	[E1]	1.37×10 ⁻³	$\alpha(K)=5.20\times10^{-5} \ 8; \ \alpha(L)=5.73\times10^{-6} \ 8; \alpha(M)=1.045\times10^{-6} \ 15; \ \alpha(N+)=0.001309 \ 19 \alpha(N)=1.696\times10^{-7} \ 24; \ \alpha(O)=9.20\times10^{-9} \ 13; \alpha(IPF)=0.001309 \ 19$			
		3374.1 6	100 11	0.0	5/2+	[E1]	1.46×10 ⁻³	$\alpha(K)=4.81\times10^{-5} 7; \alpha(L)=5.29\times10^{-6} 8; \alpha(M)=9.66\times10^{-7} 14; \alpha(N+)=0.001404 20 \alpha(N)=1.568\times10^{-7} 22; \alpha(O)=8.50\times10^{-9} 12; \alpha(IPF)=0.001404 20$			
3458.9	3/2-	3270.7 10	16 <i>10</i>	189.22	3/2+	[E1]	1.41×10 ⁻³	$\alpha(K) = 5.02 \times 10^{-5} 7; \ \alpha(L) = 5.52 \times 10^{-6} 8; \alpha(M) = 1.008 \times 10^{-6} 15; \ \alpha(N+) = 0.001352 19 \alpha(N) = 1.636 \times 10^{-7} 23; \ \alpha(O) = 8.87 \times 10^{-9} 13; \alpha(IPF) = 0.001352 19$			
		3458.5 6	100 20	0.0	5/2+	[E1]	1.50×10 ⁻³	$\alpha(\mathbf{K}) = 4.65 \times 10^{-5} 7; \ \alpha(\mathbf{L}) = 5.12 \times 10^{-6} 8; \ \alpha(\mathbf{M}) = 9.34 \times 10^{-7} 13; \ \alpha(\mathbf{N}+) = 0.001443 \ 21 \alpha(\mathbf{N}) = 1.516 \times 10^{-7} \ 22; \ \alpha(\mathbf{O}) = 8.22 \times 10^{-9} \ 12; \ \alpha(\mathbf{PE}) = 0.001443 \ 21$			
3480.8	$(21/2^+)$	882.1	100	2598.7	$(17/2^+)$						
3609.5	(23/2 ⁺)	306.3 ^b 4	23 ^c 5	3303.1	(21/2+)	(M1(+E2))	0.020 5	$\alpha(K)=0.018 \ 4; \ \alpha(L)=0.0022 \ 7; \ \alpha(M)=0.00041 \ 12; \ \alpha(N+)=6.9\times10^{-5} \ 19 \ \alpha(N)=6.5\times10^{-5} \ 19; \ \alpha(O)=3.1\times10^{-6} \ 6 \ Mult.; \ from DCO \ in \ ^{65}Cu(^{36}S,p3n\gamma).$			
		949.2 ^b 4	100 ^c 10	2660.4	(19/2+)	(E2)	9.96×10 ⁻⁴	$\alpha(K)=0.000873 \ 13; \ \alpha(L)=0.0001013 \ 15; \alpha(M)=1.86\times10^{-5} \ 3; \ \alpha(N+)=3.15\times10^{-6} \ 5 \alpha(N)=2.99\times10^{-6} \ 5; \ \alpha(O)=1.553\times10^{-7} \ 22 Mult : from DCO in \ {}^{65}Cu({}^{36}S \ p3ny)$			
3620.9	(23/2) ⁺	861.5 6	47 5	2759.4	(19/2)+	E2	1.25×10 ⁻³	$\alpha(K) = 0.001096 \ I6; \ \alpha(L) = 0.0001281 \ I8; \alpha(M) = 2.35 \times 10^{-5} \ 4; \ \alpha(N+) = 3.98 \times 10^{-6} \ 6 \alpha(N) = 3.78 \times 10^{-6} \ 6; \ \alpha(O) = 1.95 \times 10^{-7} \ 3 Mult.: \ from \ \gamma(\theta) \ (^{7}Li, 3n\gamma), \ ((\alpha, n\gamma), (^{6}Li, p, 2n\gamma)).$			
		881.8 4	100 10	2739.1	$(21/2^+)$						
3669.5	$(25/2^+)$	930.8 8	100	2743.1	$(17/2^+)$	E2	1.04×10^{-3}	α (K)=0.000914 <i>13</i> ; α (L)=0.0001061 <i>15</i> ;			

						Adopted I	levels, Gamma	s (continued)		
γ (⁹⁷ Ru) (continued)										
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	J_f^π	Mult. [#]	α^{e}	Comments		
								$\alpha(M)=1.94\times10^{-5} 3; \ \alpha(N+)=3.30\times10^{-6} 5$ $\alpha(N)=3.14\times10^{-6} 5; \ \alpha(O)=1.624\times10^{-7} 23$ B(E2)(W.u.)=6.2 8 Mult.: $\gamma(\theta) \ (^{12}C.3n\gamma), \ ((\alpha,n\gamma), (^{6}Li,p.2n\gamma)).$		
3941.1		1202.0.3		2739.1	$(21/2^+)$	(D)		Mult.: from $\gamma(\theta)$ (⁷ Li,3n γ).		
3941.8	(23/2 ⁻)	716.3 ^b 4	100	3225.5	(19/2 ⁻)	(E2)	0.00198	$\alpha(K)=0.001732\ 25;\ \alpha(L)=0.000205\ 3;\ \alpha(M)=3.77\times10^{-5}\ 6;\ \alpha(N+)=6.37\times10^{-6}\ 9$		
								$\alpha(N)=6.06\times10^{-6}$ 9; $\alpha(O)=3.06\times10^{-7}$ 5		
								Mult.: from DCO in 65 Cu(36 S,p3n γ).		
4262.7	(27/2 ⁺)	593.13 17	87 ^c 9	3669.5	(25/2+)	(M1(+E2))	0.00319 10	α (K)=0.00279 8; α (L)=0.000329 17; α (M)=6.0×10 ⁻⁵ 4; α (N+)=1.02×10 ⁻⁵ 5		
								$\alpha(N)=9.7\times10^{-6} 5; \alpha(O)=4.99\times10^{-7} 8$		
								Mult.: from DCO in 65 Cu(36 S,p3n γ).		
		641.2	100 ^C	3620.9	$(23/2)^+$	(E2)	0.00265	$\alpha(K)=0.00232\ 4;\ \alpha(L)=0.000278\ 4;\ \alpha(M)=5.09\times10^{-5}\ 8;\ \alpha(N+)=8.58\times10^{-6}\ 12$		
								$\alpha(N)=8.18\times10^{-6}$ 12; $\alpha(O)=4.08\times10^{-7}$ 6		
								B(E2)(W.u.)=21 3		
								Mult.: from DCO in 65 Cu(36 S,p3n γ).		
4653.1	(27/2 ⁺)	1043.6 ^b 4	100	3609.5	(23/2 ⁺)	(E2)	8.03×10^{-4}	α (K)=0.000704 <i>10</i> ; α (L)=8.12×10 ⁻⁵ <i>12</i> ; α (M)=1.487×10 ⁻⁵ <i>21</i> ; α (N+)=2.53×10 ⁻⁶ <i>4</i>		
								$\alpha(N)=2.40\times10^{-6}$ 4; $\alpha(O)=1.254\times10^{-7}$ 18		
								Mult.: from DCO in 65 Cu(36 S,p3n γ).		
4694.5	(27/2 ⁻)	752.7 ^b 4	100	3941.8	(23/2 ⁻)	(E2)	1.75×10^{-3}	α (K)=0.001527 22; α (L)=0.000180 3; α (M)=3.31×10 ⁻⁵ 5; α (N+)=5.59×10 ⁻⁶ 8		
								$\alpha(N)=5.32\times10^{-6} 8; \alpha(O)=2.70\times10^{-7} 4$		
								Mult.: from DCO in 65 Cu(36 S,p3n γ).		
4730.1	(29/2+)	466.8 <i>3</i>	100 8	4262.7	(27/2 ⁺)	(M1(+E2))	0.0060 6	α (K)=0.0053 5; α (L)=0.00063 8; α (M)=0.000116 15; α (N+)=1.96×10 ⁻⁵ 22		
								$\alpha(N)=1.86\times10^{-5}\ 22;\ \alpha(O)=9.3\times10^{-7}\ 6$		
								Mult.: from DCO in 65 Cu(36 S,p3n γ).		
		1061.5 4	77 ^c 8	3669.5	(25/2+)	(E2)	7.73×10^{-4}	$\alpha(K)=0.000678 \ 10; \ \alpha(L)=7.81\times10^{-5} \ 11; \ \alpha(M)=1.430\times10^{-5} \ 20; \ \alpha(N+)=2.43\times10^{-6} \ 4$		
								$\alpha(N)=2.31\times10^{-6} 4; \alpha(O)=1.208\times10^{-7} 17$		
								B(E2)(W.u.)=0.97/17		
1762 2		500 6 1	100	1262 7	(27/2+)			Mult.: from DCO in ${}^{05}Cu({}^{50}S,p3n\gamma)$.		
4703.3 5106.4	$(31/2^+)$	300.0 4 343 1 4	13 3	4202.7 4763 3	$(21/2^{\circ})$					
J100. 4	(31/2)	575.17	155	+/05.5						

From ENSDF

⁹⁷₄₄Ru₅₃-16

L

$\gamma(^{97}\text{Ru})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. [#]	α^{e}	Comments
5106.4	(31/2+)	376.1 <i>4</i> 843.9 <i>4</i>	13 <i>4</i> 100 <i>10</i>	4730.1 4262.7	(29/2 ⁺) (27/2 ⁺)	(E2)	1.32×10 ⁻³	$\alpha(K)=0.001152\ 17;\ \alpha(L)=0.0001348\ 19;\ \alpha(M)=2.47\times10^{-5}\ 4;$ $\alpha(N+)=4.19\times10^{-6}\ 6$
5373.2	(33/2+)	266.8 4	26 4	5106.4	(31/2 ⁺)	(M1(+E2))	0.031 9	$\alpha(N)=3.98\times10^{-6} \ 6; \ \alpha(O)=2.04\times10^{-7} \ 3$ $\alpha(K)=0.027 \ 8; \ \alpha(L)=0.0035 \ 13; \ \alpha(M)=0.00064 \ 23; \ \alpha(N+)=0.00011$ 4
		643.1 4	100 10	4730.1	(29/2+)	(E2)	0.00263	$\alpha(N)=0.00010 \ 4; \ \alpha(O)=4.6\times10^{-6} \ 11$ $\alpha(K)=0.00230 \ 4; \ \alpha(L)=0.000275 \ 4; \ \alpha(M)=5.05\times10^{-5} \ 8;$ $\alpha(N+)=8.52\times10^{-6} \ 12$ $\alpha(N)=8.11\times10^{-6} \ 12; \ \alpha(O)=4.04\times10^{-7} \ 6$ $B(E_2)(W,u_{*})>12$
5490.0		795.5 4	100	4694.5	$(27/2^{-})$			
5721.8		1027.3 4	100	4694.5	$(27/2^{-})$			
6133.3	(31/2+)	1480.2 4	100	4653.1	(27/2+)	(E2)	4.60×10^{-4}	$\alpha(\mathbf{K}) = 0.000338 \ 5; \ \alpha(\mathbf{L}) = 3.83 \times 10^{-5} \ 6; \ \alpha(\mathbf{M}) = 7.00 \times 10^{-6} \ 10; \\ \alpha(\mathbf{N}+) = 7.69 \times 10^{-5} \ 11 \\ \alpha(\mathbf{N}) = 1.124 \times 10^{-6} \ 16 \ \alpha(\mathbf{O}) \ 6 \ 022 \times 10^{-8} \ 0.5 \ \alpha(\mathbf{M}) = 7.57 \times 10^{-5} \ 11 \\ \alpha(\mathbf{N}) = 1.124 \times 10^{-6} \ 16 \ \alpha(\mathbf{O}) \ 6 \ 022 \times 10^{-8} \ 0.5 \ \alpha(\mathbf{M}) = 7.57 \times 10^{-5} \ 11 \\ \alpha(\mathbf{N}) = 1.124 \times 10^{-6} \ 16 \ \alpha(\mathbf{O}) \ 6 \ 022 \times 10^{-8} \ 0.5 \ \alpha(\mathbf{M}) = 7.57 \times 10^{-5} \ 11 \\ \alpha(\mathbf{N}) = 1.124 \times 10^{-6} \ 16 \ \alpha(\mathbf{O}) \ 6 \ 022 \times 10^{-8} \ 0.5 \ \alpha(\mathbf{M}) = 7.00 \times 10^{-5} \$
6248.4	(35/2+)	875.2 4	100	5373.2	(33/2+)	(M1(+E2))	0.00124 4	$\begin{aligned} \alpha(N) &= 1.134 \times 10^{-10}, \ \alpha(O) &= 0.05 \times 10^{-9}, \ \alpha(HF) &= 7.57 \times 10^{-11} \\ \alpha(K) &= 0.00109 \ 4; \ \alpha(L) &= 0.000126 \ 3; \ \alpha(M) &= 2.30 \times 10^{-5} \ 6; \\ \alpha(N+) &= 3.91 \times 10^{-6} \ 11 \\ \alpha(L) &= 2.72 \times 10^{-6} \ 10 \ \alpha(O) &= 1.06 \times 10^{-7} \ 0. \end{aligned}$
6312.6		87761	100	5/100 0				$\alpha(N)=3.72\times10^{-6}$ 10; $\alpha(O)=1.90\times10^{-6}$ 9
6765.2	(35/2+)	631.9 <i>4</i>	100	6133.3	(31/2 ⁺)	(E2)	0.00276	$\alpha(K)=0.00241 \ 4; \ \alpha(L)=0.000289 \ 4; \ \alpha(M)=5.31\times10^{-5} \ 8; \ \alpha(N+)=8.94\times10^{-6} \ 13 \ \alpha(N)=8.52\times10^{-6} \ 12; \ \alpha(O)=4.24\times10^{-7} \ 6$
6889.9	(37/2 ⁺)	641.5 <i>4</i>	100	6248.4	(35/2+)	(M1(+E2))	0.00262 5	$\alpha(N) = 6.52 \times 10^{-5} I2, \ \alpha(O) = 4.24 \times 10^{-5} O O O O O O O O O O O O O O O O O O O$
7280 4	$(20/2^{+})$	400 5 4	100	6000 0	$(27/2^{+})$			$\alpha(N) = 7.95 \times 10^{\circ} 23; \alpha(O) = 4.10 \times 10^{\circ} 7$
7360.4	(39/2)	490.3 4	100	6765.2	(37/2) $(35/2^+)$	(E2)	0.00212	$\alpha(K) = 0.00185$ 2; $\alpha(I) = 0.000221$ 4; $\alpha(M) = 4.04 \times 10^{-5}$ 6;
7402.8	(39/2)	097.0 4	100	0703.2	(33/2)	(E2)	0.00212	$\alpha(N)=0.00185 \ 5, \ \alpha(L)=0.000221 \ 4, \ \alpha(M)=4.04\times10^{-6} \ 0, \ \alpha(N+)=6.83\times10^{-6} \ 10 \ \alpha(N)=6.50\times10^{-6} \ 10; \ \alpha(\Omega)=3.27\times10^{-7} \ 5$
7638.6	(39/2+)	1390.1 4	100	6248.4	(35/2+)	(E2)	4.84×10 ⁻⁴	$\alpha(\mathbf{K})=0.000383 \ 6; \ \alpha(\mathbf{L})=4.35\times10^{-5} \ 7; \ \alpha(\mathbf{M})=7.96\times10^{-6} \ 12; \\ \alpha(\mathbf{N}+)=4.89\times10^{-5} \ 7 \\ \alpha(\mathbf{N})=1.289\times10^{-6} \ 18; \ \alpha(\mathbf{O})=6.84\times10^{-8} \ 10; \ \alpha(\mathbf{IPF})=4.75\times10^{-5} \ 7 \\ \mathbf{P}(\mathbf{F}2)(\mathbf{W}u) \ge 0.20 $
7678 5		21574	100	7462.8	$(39/2^+)$			D(E2)(W.U.)/0.50
7908.2		229.7 4	100	7678.5	(37/2)			
8159.3	(39/2+)	1269.2 4	100	6889.9	(37/2 ⁺)	(M1(+E2))	5.67×10 ⁻⁴ 23	$\begin{aligned} &\alpha(\mathrm{K}) = 0.000483 \ 22; \ \alpha(\mathrm{L}) = 5.47 \times 10^{-5} \ 22; \ \alpha(\mathrm{M}) = 1.00 \times 10^{-5} \ 4; \\ &\alpha(\mathrm{N}+) = 1.92 \times 10^{-5} \ 16 \\ &\alpha(\mathrm{N}) = 1.62 \times 10^{-6} \ 7; \ \alpha(\mathrm{O}) = 8.7 \times 10^{-8} \ 5; \ \alpha(\mathrm{IPF}) = 1.75 \times 10^{-5} \ 17 \end{aligned}$

$\gamma(^{97}\text{Ru})$ (continued)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	α^{e}	Comments
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8407.2		944.4 <i>4</i>	100	7462.8 (39/2+)			
	8468.4	(43/2 ⁺)	829.8 4	100	7638.6 (39/2+)	(E2)	1.37×10 ⁻³	α (K)=0.001200 <i>17</i> ; α (L)=0.0001406 <i>20</i> ; α (M)=2.58×10 ⁻⁵ <i>4</i> ; α (N+)=4.37×10 ⁻⁶ <i>7</i> α (N)=4.15×10 ⁻⁶ <i>6</i> : α (Q)=2.13×10 ⁻⁷ <i>3</i>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8489.1	$(41/2^+)$	329.6 4	62	8159.3 (39/2 ⁺)			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1108.6 4	82 8	7380.4 (39/2+)	(M1(+E2))	0.00073 4	$\alpha(K)=0.00064 \ 3; \ \alpha(L)=7.3\times10^{-5} \ 3; \ \alpha(M)=1.34\times10^{-5} \ 5; \ \alpha(N+)=2.98\times10^{-6} \ 5$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1600 <i>1</i>	100 10	6889.9 (37/2+)	(E2)	4.52×10 ⁻⁴	$\alpha(N)=2.17\times10^{-6} \ 9; \ \alpha(O)=1.16\times10^{-7} \ 6; \ \alpha(IPF)=6.9\times10^{-7} \ 8$ $\alpha(K)=0.000290 \ 4; \ \alpha(L)=3.28\times10^{-5} \ 5; \ \alpha(M)=5.99\times10^{-6} \ 9; $ $\alpha(N+)=0.0001232 \ 18$ $\alpha(N)=9.71\times10^{-7} \ 14; \ \alpha(O)=5.18\times10^{-8} \ 8; \ \alpha(IPF)=0.0001222 \ 18$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8541.7 8621.3		1078.9 <i>4</i> 1843.9 <i>10</i>	100 100	7462.8 (39/2 ⁺) 6777.3			
9383.0 841.3 4 100 8541.7 9423.1 881.4 4 100 8541.7 9446.7 1039.5 4 100 8407.2 9728.8 524.5 4 100 9204.3 (45/2 ⁺) 9763.6 (45/2 ⁺) 1142.3 4 13 6 8621.3 1274.5 4 100 10 8489.1 (41/2 ⁺) (E2) 5.42×10 ⁻⁴ α (K)=0.000458 7; α (L)=5.22×10 ⁻⁵ 8; α (M)=9.56×10 ⁻⁶ 14; α (N)=1.547×10 ⁻⁶ 22; α (O)=8.17×10 ⁻⁸ 12; α (IPF)=2.01×10 ⁻⁵ 3 10121.1 (47/2 ⁺) 916.7 4 100 35 9204.3 (45/2 ⁺) (M1(+E2)) 0.00112 4 α (K)=0.00098 4; α (L)=0.000113 3; α (M)=2.06×10 ⁻⁵ 6; α (N+)=3.51×10 ⁻⁶ 11 α (N)=3.34×10 ⁻⁶ 10; α (O)=1.76×10 ⁻⁷ 9 10126.1 1637.0 10 9204.3 (45/2 ⁺) 10829.4 1625.0 100 9204.3 (45/2 ⁺) 10829.4 1625.0 100 9204.3 (45/2 ⁺) 10927.2 (47/2 ⁺) 801.1 4 67 15 10126.1 1163.6 4 100 17 9763.6 (45/2 ⁺) (M1(+E2)) 0.00066 3 α (K)=0.00058 3; α (L)=6.6×10 ⁻⁵ 3; α (M)=1.21×10 ⁻⁵ 5; α (N)=1.96×10 ⁻⁶ 3 α (N)=1.96×10 ⁻⁶ 3 α (N)=1.96×10 ⁻⁶ 3 α (N)=1.96×10 ⁻⁶ 3 α (N)=1.90×10 ⁻⁶ 6 α (N)=1.90×10 ⁻⁷ 8	9204.3	(45/2+)	736.1 4	100	8468.4 (43/2 ⁺)	(M1(+E2))	0.00187 4	$\alpha(K)=0.00164 \ 4; \ \alpha(L)=0.000190 \ 3; \ \alpha(M)=3.49\times10^{-5} \ 6; \ \alpha(N+)=5.93\times10^{-6} \ 9 \ \alpha(N)=5.63\times10^{-6} \ 8; \ \alpha(O)=2.94\times10^{-7} \ 9$
9423.1 881.4 4 100 8541.7 9446.7 1039.5 4 100 9204.3 (45/2 ⁺) 9763.6 (45/2 ⁺) 1142.3 4 13 6 8621.3 1274.5 4 100 10 8489.1 (41/2 ⁺) (E2) 5.42×10^{-4} $\alpha(K)=0.000458 7; \alpha(L)=5.22 \times 10^{-5} 8; \alpha(M)=9.56 \times 10^{-6} 14; \alpha(N+)=2.18 \times 10^{-5} 4$ $\alpha(N+)=2.18 \times 10^{-5} 4$ 10121.1 (47/2 ⁺) 916.7 4 100 35 9204.3 (45/2 ⁺) (M1(+E2)) 0.00112 4 $\alpha(K)=0.00098 4; \alpha(L)=0.000113 3; \alpha(M)=2.06 \times 10^{-5} 6; \alpha(N+)=3.51 \times 10^{-6} 11 \alpha(N)=3.34 \times 10^{-6} 10; \alpha(O)=1.76 \times 10^{-7} 9$ 10126.1 1637.0 10 100 8489.1 (41/2 ⁺) 10622.7 1418.3 4 100 9204.3 (45/2 ⁺) 10829.4 1625.0 1 100 9204.3 (45/2 ⁺) 10829.4 1625.0 1 100 9204.3 (45/2 ⁺) 10927.2 (47/2 ⁺) 801.1 4 67 15 10126.1 1163.6 4 100 17 9763.6 (45/2 ⁺) (M1(+E2)) 0.00066 3 $\alpha(K)=0.00058 3; \alpha(L)=6.6 \times 10^{-5} 3; \alpha(M)=1.21 \times 10^{-5} 5; \alpha(N+)=5.3 \times 10^{-6} 3$ $\alpha(N+)=5.3 \times 10^{-6} 3; \alpha(M)=1.21 \times 10^{-5} 5; \alpha(N)=1.21 \times 10^{-5} 5; \alpha(N+)=5.3 \times 10^{-6} 3$ 11081.2 (49/2 ⁺) 960.0 4 100 20 10121.1 (47/2 ⁺) (M1(+E2)) 0.00114 $\alpha(K)=0.00058 4; \alpha(L)=0.000101 3; \alpha(M)=1.86 \times 10^{-5} 6; \alpha(N+)=3.16 \times 10^{-6} 11 \alpha(N)=3.00 \times 10^{-6} 8; \alpha(O)=1.04 \times 10^{-7} 6; \alpha(IPF)=3.2 \times 10^{-6} 4$ $\alpha(N+)=3.3 \times 10^{-6} 3$ $\alpha(N+)=3.16 \times 10^{-6} 11 \alpha(N)=3.00 \times 10^{-6} 8; \alpha(O)=1.04 \times 10^{-7} 6; \alpha(IPF)=3.2 \times 10^{-6} 4$ $\alpha(N)=3.00 \times 10^{-6} 10; \alpha(O)=1.59 \times 10^{-7} 8$	9383.0		841.3 4	100	8541.7			
9446.7 1039.5 4 100 8407.2 9728.8 524.5 4 100 9204.3 (45/2 ⁺) 9763.6 (45/2 ⁺) 1142.3 4 13 6 8621.3 1274.5 4 100 10 8489.1 (41/2 ⁺) (E2) 5.42×10 ⁻⁴ $\alpha(K)=0.000458$ 7; $\alpha(L)=5.22\times10^{-5}$ 8; $\alpha(M)=9.56\times10^{-6}$ 14; $\alpha(N+)=2.18\times10^{-5}$ 4 $\alpha(N)=1.547\times10^{-6}$ 22; $\alpha(O)=8.17\times10^{-8}$ 12; $\alpha(IPF)=2.01\times10^{-5}$ 3 10121.1 (47/2 ⁺) 916.7 4 100 35 9204.3 (45/2 ⁺) (M1(+E2)) 0.00112 4 $\alpha(K)=0.00098$ 4; $\alpha(L)=0.000113$ 3; $\alpha(M)=2.06\times10^{-5}$ 6; $\alpha(N+)=3.51\times10^{-6}$ 11 $\alpha(N)=3.34\times10^{-6}$ 10; $\alpha(O)=1.76\times10^{-7}$ 9 10126.1 1637.0 10 100 8489.1 (41/2 ⁺) 10622.7 1418.3 4 100 9204.3 (45/2 ⁺) 10829.4 1625.0 1 100 9204.3 (45/2 ⁺) 10927.2 (47/2 ⁺) 801.1 4 67 15 10126.1 1163.6 4 100 17 9763.6 (45/2 ⁺) (M1(+E2)) 0.00066 3 $\alpha(K)=0.00058$ 3; $\alpha(L)=6.6\times10^{-5}$ 3; $\alpha(M)=1.21\times10^{-5}$ 5; $\alpha(N+)=5.3\times10^{-6}$ 3 $\alpha(N)=1.96\times10^{-6}$ 3; $\alpha(M)=1.21\times10^{-5}$ 5; $\alpha(N+)=5.3\times10^{-6}$ 3 $\alpha(N)=1.96\times10^{-6}$ 8; $\alpha(O)=1.04\times10^{-7}$ 6; $\alpha(IPF)=3.2\times10^{-6}$ 4 $\alpha(K)=0.00088$ 4; $\alpha(L)=0.000101$ 3; $\alpha(M)=1.86\times10^{-5}$ 6; $\alpha(N+)=3.16\times10^{-6}$ 11 $\alpha(N)=3.00\times10^{-6}$ 10; $\alpha(O)=1.59\times10^{-7}$ 8	9423.1		881.4 4	100	8541.7			
9728.8 524.5 4 100 9204.3 (45/2 ⁺) 9763.6 (45/2 ⁺) 1142.3 4 13 6 8621.3 1274.5 4 100 10 8489.1 (41/2 ⁺) (E2) 5.42×10 ⁻⁴ $\alpha(K)=0.0004587; \alpha(L)=5.22\times10^{-5}8; \alpha(M)=9.56\times10^{-6}14; \alpha(N+)=2.18\times10^{-5}4$ $\alpha(N)=1.547\times10^{-6}22; \alpha(O)=8.17\times10^{-8}12; \alpha(IPF)=2.01\times10^{-5}3$ 10121.1 (47/2 ⁺) 916.7 4 100 35 9204.3 (45/2 ⁺) (M1(+E2)) 0.00112 4 $\alpha(K)=0.000984; \alpha(L)=0.0001133; \alpha(M)=2.06\times10^{-5}6; \alpha(N+)=3.51\times10^{-6}11$ $\alpha(N)=3.34\times10^{-6}10; \alpha(O)=1.76\times10^{-7}9$ 10126.1 1637.0 10 100 8489.1 (41/2 ⁺) 10622.7 1418.3 4 100 9204.3 (45/2 ⁺) 10829.4 1625.0 1 100 9204.3 (45/2 ⁺) 10927.2 (47/2 ⁺) 801.1 4 67 15 10126.1 1163.6 4 100 17 9763.6 (45/2 ⁺) (M1(+E2)) 0.00066 3 $\alpha(K)=0.000583; \alpha(L)=6.6\times10^{-5}3; \alpha(M)=1.21\times10^{-5}5; \alpha(N+)=5.3\times10^{-6}3$ $\alpha(N)=1.96\times10^{-6}8; \alpha(O)=1.04\times10^{-7}6; \alpha(IPF)=3.2\times10^{-6}4$ $\alpha(N)=3.00\times10^{-6}11; \alpha(O)=1.59\times10^{-7}8$	9446.7		1039.5 4	100	8407.2			
9763.6 $(45/2^{+})$ 1142.3 4 13 6 8621.3 1274.5 4 100 10 8489.1 $(41/2^{+})$ (E2) 5.42×10 ⁻⁴ $\alpha(K)=0.000458 7; \alpha(L)=5.22\times10^{-5} 8; \alpha(M)=9.56\times10^{-6} 14; \alpha(N+)=2.18\times10^{-5} 4$ $\alpha(N)=1.547\times10^{-6} 2; \alpha(O)=8.17\times10^{-8} 12; \alpha(IPF)=2.01\times10^{-5} 3; \alpha(N)=2.06\times10^{-5} 6; \alpha(N+)=3.51\times10^{-6} 11$ $\alpha(N)=3.34\times10^{-6} 10; \alpha(O)=1.76\times10^{-7} 9$ 10126.1 1637.0 10 100 8489.1 $(41/2^{+})$ 10622.7 1418.3 4 100 9204.3 $(45/2^{+})$ 10829.4 1625.0 1 100 9204.3 $(45/2^{+})$ 10927.2 $(47/2^{+})$ 801.1 4 67 15 10126.1 1163.6 4 100 17 9763.6 $(45/2^{+})$ (M1(+E2)) 0.00066 3 $\alpha(K)=0.00058 3; \alpha(L)=6.6\times10^{-5} 3; \alpha(M)=1.21\times10^{-5} 5; \alpha(N)=1.96\times10^{-6} 8; \alpha(O)=1.04\times10^{-7} 6; \alpha(IPF)=3.2\times10^{-6} 4$ 11081.2 $(49/2^{+})$ 960.0 4 100 20 10121.1 $(47/2^{+})$ (M1(+E2)) 0.00101 4 $\alpha(K)=0.00088 4; \alpha(L)=0.000101 3; \alpha(M)=1.86\times10^{-5} 6; \alpha(N+)=3.16\times10^{-6} 11 \alpha(N)=3.00\times10^{-6} 10; \alpha(O)=1.59\times10^{-7} 8$	9728.8		524.5 4	100	9204.3 (45/2 ⁺)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9763.6	$(45/2^+)$	1142.3 4	13 6	8621.3			5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1274.5 4	100 10	8489.1 (41/2+)	(E2)	5.42×10 ⁻⁴	$\alpha(K)=0.000458\ 7;\ \alpha(L)=5.22\times10^{-5}\ 8;\ \alpha(M)=9.56\times10^{-6}\ 14;$ $\alpha(N+)=2.18\times10^{-5}\ 4$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10121.1	(47/2 ⁺)	916.7 <i>4</i>	100 35	9204.3 (45/2 ⁺)	(M1(+E2))	0.00112 4	$\alpha(N)=1.547\times10^{-6}\ 22;\ \alpha(O)=8.17\times10^{-6}\ 12;\ \alpha(IPF)=2.01\times10^{-5}\ 3$ $\alpha(K)=0.00098\ 4;\ \alpha(L)=0.000113\ 3;\ \alpha(M)=2.06\times10^{-5}\ 6;$ $\alpha(N+)=3.51\times10^{-6}\ 11$ $\alpha(N)=3.34\times10^{-6}\ 10;\ \alpha(O)=1.76\times10^{-7}\ 9$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1652.0.10	50.25	$8468.4 (43/2^+)$			u(1)-5.54×10 10, u(0)-1.70×10 7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10126.1		1637.0 10	100	$8489.1 (41/2^+)$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10622.7		1418.3 4	100	9204.3 (45/2+)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10829.4		1625.0 <i>1</i>	100	9204.3 (45/2+)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10927.2	$(47/2^+)$	801.1 4	67 15	10126.1			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1163.6 4	100 17	9763.6 (45/2+)	(M1(+E2))	0.00066 3	$\alpha(K) = 0.00058 \ 3; \ \alpha(L) = 6.6 \times 10^{-5} \ 3; \ \alpha(M) = 1.21 \times 10^{-5} \ 5; \alpha(N+) = 5.3 \times 10^{-6} \ 3 \alpha(N) = 1.96 \times 10^{-6} \ 8; \ \alpha(O) = 1.04 \times 10^{-7} \ 6; \ \alpha(IPF) = 3.2 \times 10^{-6} \ 4$
$\alpha(N)=3.00\times10^{\circ} 10; \ \alpha(O)=1.59\times10^{-7} 8$ 1877.8 10 25 13 9204.3 (45/2 ⁺)	11081.2	(49/2+)	960.0 4	100 20	10121.1 (47/2+)	(M1(+E2))	0.00101 4	$\alpha(K) = 0.00088 \ 4; \ \alpha(L) = 0.000101 \ 3; \ \alpha(M) = 1.86 \times 10^{-5} \ 6; \ \alpha(N+) = 3.16^{-6} \ 11 \ (D) = 1.50 \ 10^{-7} \ 0$
			1877.8 10	25 13	9204.3 (45/2+)			$\alpha(N)=5.00\times10^{\circ}$ 10; $\alpha(O)=1.59\times10^{\circ}$ 8

18

From ENSDF

L

$\gamma(^{97}\text{Ru})$ (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	α ^e	Comments
11288.0	(51/2+)	206.8 4	100	11081.2 (49/2	(M1(+E2))	0.07 3	$\alpha(K)=0.060\ 23;\ \alpha(L)=0.008\ 4;\ \alpha(M)=0.0015\ 8;\ \alpha(N+)=0.00025\ 12$ $\alpha(N)=0.00024\ 11;\ \alpha(O)=1.0\times10^{-5}\ 4$
11508.5		1387.4 4	100	10121.1 (47/2-)		
11717.6	(53/2+)	429.6 4	100	11288.0 (51/2	(M1(+E2))	0.0076 9	α (K)=0.0066 8; α (L)=0.00080 12; α (M)=0.000147 23; α (N+)=2.5×10 ⁻⁵ 4 α (N)=2.4×10 ⁻⁵ 4; α (O)=1.17×10 ⁻⁶ 10
12124.5	(49/2+)	1197.3 4	100	10927.2 (47/2	(M1(+E2))	0.00063 3	$\alpha(K)=0.000546\ 25;\ \alpha(L)=6.20\times10^{-5}\ 25;\ \alpha(M)=1.14\times10^{-5}\ 5;\alpha(N+)=8.4\times10^{-6}\ 6\alpha(N)=1.84\times10^{-6}\ 8;\ \alpha(O)=9.8\times10^{-8}\ 6;\ \alpha(IPF)=6.5\times10^{-6}\ 7$
12421.5		1340.3 4	100	11081.2 (49/2)		
12559.4		1478.1 4	100	11081.2 (49/2)		
12729.2		1899.8 <i>10</i>	100	10829.4			
12737.9		316.3 4	100	12421.5			
12744.5		1456.4 <i>4</i>	100	11288.0 (51/2)		
12946.9		1229.3 4	100	11717.6 (53/2-)		
13253.8		694.4 <i>4</i>	100	12559.4			
13328.1	(51/2+)	1203.6 4	100	12124.5 (49/2	(M1(+E2))	0.00062 3	$\alpha(K)=0.000540\ 25;\ \alpha(L)=6.13\times10^{-5}\ 24;\ \alpha(M)=1.12\times10^{-5}\ 5;\alpha(N+)=9.2\times10^{-6}\ 7\alpha(N)=1.82\times10^{-6}\ 8;\ \alpha(O)=9.7\times10^{-8}\ 5;\ \alpha(IPF)=7.3\times10^{-6}\ 8$
13975.4		1028.4 4	100	12946.9			
14566.0		1619.0 <i>10</i>	100	12946.9			
15047.7		1793.9	100	13253.8			
15209.9		1881.8 <i>10</i>	100	13328.1 (51/2-)		
15479.8		2151.7 10	100	13328.1 (51/2)		
16088.0		1522.0 10	100	14566.0			
16132.0		1566.0 <i>10</i>	100	14566.0			
17291.7		2081.8 10	100	15209.9			

[†] From either of the ⁹⁷Rh ε decays where available. For gammas seen only in reaction data, E is the unweighted average of measurements in (⁷Li,3n γ), ((α ,n γ), (⁶Li,p2n γ)) and (α ,2n γ) data sets where available (the data from ⁶⁵Cu(³⁶S,p3n γ) dataset, which were recalibrated by evaluator – see this dataset for details – were not considered to the average).

[‡] Weighted average of measurements in all data sets where available.

[#] It is assumed that transitions deduced to be stretched Q from $\gamma(\theta)$ in reaction experiments are E2 and not M2.

^(a) The δ values determined in the ((α ,n γ), ⁶Li,p2n γ)) and (α ,2n γ) experiments have not been adopted because of the large discrepancy between the two measurements. The values are given in comments.

[&] D+Q from ((α ,n γ),(⁶Li,p2n γ)); $\Delta \pi$ =no from level scheme.

^{*a*} D from ((α ,n γ),(⁶Li,p2n γ)); $\Delta \pi$ =yes from level scheme.

^{*b*} From ${}^{65}Cu({}^{36}S,p3n\gamma)$.

19

^{*c*} From ${}^{65}Cu({}^{36}S,p3n\gamma)$.

$\gamma(^{97}\text{Ru})$ (continued)

 d Differ by 3σ from calculated value.

20

^{*e*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^{*f*} Multiply placed with undivided intensity.

^{*g*} Multiply placed with intensity suitably divided.

Level Scheme

Intensities: Relative photon branching from each level

⁹⁷₄₄Ru₅₃

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{97}_{44}\rm{Ru}_{53}$

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

⁹⁷₄₄Ru₅₃

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

 $^{97}_{44}{
m Ru}_{53}$

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

 $^{97}_{44}\rm{Ru}_{53}$

 $^{97}_{44}{
m Ru}_{53}$