$^{97}\mathbf{Pd}\ \varepsilon$ decay 1980Go11

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 111, 525 (2010)	19-Nov-2009

Parent: ⁹⁷Pd: E=0.0; $J^{\pi}=(5/2^+)$; $T_{1/2}=3.10 \text{ min } 9$; $Q(\varepsilon)=4.79\times10^3 30$; $\%\varepsilon+\%\beta^+$ decay=100.0 ⁹⁷Pd-E, $J^{\pi}, T_{1/2}$: ADOPTED values for ⁹⁷Pd. ⁹⁷Pd-Q(ε): From 2003Au03.

⁹⁷ Rh Level	s
------------------------	---

E(level) [†] 0.0 258.76 265.40 9 475.12 10 1004.7 7 1058.07 12	$ \begin{array}{c} J^{\pi \ddagger} \\ \frac{9/2^{+}}{1/2^{-}} \\ (7/2^{+}) \\ (5/2^{+},7/2) \\ (3/2^{-}) \\ (5/2^{+}) \\ (5/2^{+},7/2) \\ (5$	$\frac{T_{1/2}^{\ddagger}}{30.7 \min 6}_{46.2 \min 16}$	E(level) [†] 1994.5 3 2068.0 5 2113.32 19 2187.2 8 2229.7 3 2295.4 4	$J^{\pi \ddagger}$ $(5/2^+, 7/2^+)$ $(3/2, 5/2, 7/2)$ $(5/2^+, 7/2^+)$ $(3/2, 5/2, 7/2)$ $(5/2^+, 7/2^+)$ $(3/2^+, 5/2^+, 7/2^+)$ $(5/2^+, 7/2^+)$
475.12 10 1004.7 7 1058.07 12 1199.2 4 1415.5 3 1528.7 5 1619.1 5 1759.59 9 1906.5 4	$\begin{array}{c} (5/2^+,7/2) \\ (3/2^-) \\ (5/2^+) \\ (5/2^+,7/2) \\ (3/2^+,5/2,7/2) \\ (3/2,5/2,7/2) \\ (3/2,5/2,7/2) \\ (5/2^+,7/2^+) \\ (3/2,5/2,7/2) \end{array}$		2187.2 8 2229.7 3 2295.4 4 2903.7 5 2950.1 7 3091.3 4 3240.1 5 3607.2 5	$\begin{array}{c} (3/2,5/2,7/2) \\ (5/2^+,7/2^+) \\ (3/2^+,5/2^+,7/2^+) \\ (5/2^+,7/2^+) \\ (5/2^+,7/2^+) \\ (3/2^+,5/2^+,7/2^+) \\ (5/2^+,7/2^+) \\ (3/2^+,5/2^+,7/2^+) \\ (3/2^+,5/2^+,7/2^+) \end{array}$

[†] From least squares fit to E γ . Normalized χ^2 =1.88 greater than critical χ^2 =1.77. [‡] From Adopted Levels.

 ε, β^+ radiations

E(decay)	E(level)	Iβ ⁺ ‡	$I\varepsilon^{\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger\ddagger}$	Comments
$(1.2 \times 10^3 \ 3)$	3607.2		1.90 17	4.4 3	1.90 17	εK=0.864 11; εL=0.1093 21; εM+=0.0261 6
$(1.5 \times 10^3 \ 3)$	3240.1	0.06 23	2.7 3	4.46 21	2.81 21	av $E\beta = 2.4 \times 10^2$ 13; $\varepsilon K = 0.85$ 7; $\varepsilon L = 0.106$ 10; $\varepsilon M + = 0.0253$ 23
$(1.7 \times 10^3 \ 3)$	3091.3	0.1 3	2.1 4	4.66 21	2.22 23	av $E\beta=3.0\times10^2$ 13; $\varepsilon K=0.82$ 10; $\varepsilon L=0.102$ 13; $\varepsilon M+=0.024$ 3
$(1.8 \times 10^3 \ 3)$	2950.1	0.15 22	1.3 3	4.92 22	1.50 10	av $E\beta$ =3.6×10 ² 14; ε K=0.78 13; ε L=0.097 16; ε M+=0.023 4
$(1.9 \times 10^3 3)$	2903.7	0.4 6	3.3 7	4.56 22	3.74 25	av E β =3.8×10 ² 14; ε K=0.76 14; ε L=0.095 17; ε M+=0.023 4
$(2.5 \times 10^3 \ 3)$	2295.4	2.2 8	2.7 10	4.89 24	4.84 25	av $E\beta = 6.5 \times 10^2$ 14; $\varepsilon K = 0.48$ 15; $\varepsilon L = 0.060$ 19; $\varepsilon M + = 0.014$ 5
$(2.6 \times 10^3 \ 3)$	2229.7	1.3 5	1.5 6	5.18 25	2.8 5	av $E\beta = 6.8 \times 10^2$ 14; $\varepsilon K = 0.45$ 15; $\varepsilon L = 0.056$ 18; $\varepsilon M + = 0.013$ 5
$(2.6 \times 10^3 3)$	2187.2	0.8 4	0.7 4	5.48 24	1.50 8	av $E\beta$ =7.0×10 ² 14; ε K=0.43 15; ε L=0.054 18; ε M+=0.013 5
$(2.7 \times 10^3 \ 3)$	2113.32	73	63	4.59 24	13.3 6	av $E\beta$ =7.4×10 ² 14; ε K=0.40 14; ε L=0.050 18; ε M+=0.012 4
$(2.7 \times 10^3 \ 3)$	2068.0	0.9 3	0.7 3	5.55 24	1.61 10	av $E\beta$ =7.6×10 ² 14; ε K=0.38 14; ε L=0.047 17; ε M+=0.011 4
$(2.8 \times 10^3 \ 3)$	1994.5	2.3 8	1.6 8	5.22 24	3.85 20	av $E\beta$ =7.9×10 ² 14; ε K=0.35 13; ε L=0.044 16; ε M+=0.010 4
$(2.9 \times 10^3 \ 3)$	1906.5	2.1 6	1.2 6	5.36 24	3.3 4	av $E\beta = 8.3 \times 10^2$ 14; $\varepsilon K = 0.32$ 12; $\varepsilon L = 0.040$ 15; $\varepsilon M + = 0.010$ 4
$(3.0 \times 10^3 \ 3)$	1759.59	7.1 15	3.3 15	4.97 23	10.4 6	av E β =9.0×10 ² 14; ε K=0.28 11; ε L=0.034 13;

Continued on next page (footnotes at end of table)

1980Go11 (continued)

 97 Pd ε decay

				- 0 ⁺	adiations (aar				
	ϵ, β' radiations (continued)								
E(decay)	E(level)	Iβ ⁺ ‡	I ε^{\ddagger}	Log ft	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments			
2						€M+=0.008 3			
$(3.2 \times 10^3 3)$	1619.1	0.29 14	0.11 7	6.5 3	0.40 18	av $E\beta = 9.6 \times 10^2$ 14; $\varepsilon K = 0.24$ 9; $\varepsilon L = 0.030$ 11; $\varepsilon M + = 0.007$ 3			
$(3.3 \times 10^3 \ 3)$	1528.7	1.5 6	0.5 3	5.9 <i>3</i>	2.0 8	av $E\beta = 1.00 \times 10^3$ 14; $\varepsilon K = 0.22$ 8; $\varepsilon L = 0.027$ 10; $\varepsilon M + = 0.0064$ 24			
$(3.4 \times 10^3 \ 3)$	1415.5	3.7 5	1.1 4	5.55 22	4.8 3	av $E\beta$ =1.06×10 ³ 14; ε K=0.19 7; ε L=0.024 9; ε M+=0.0057 21			
$(3.6 \times 10^3 \ 3)$	1199.2	2.1 3	0.47 19	5.97 22	2.6 3	av $E\beta$ =1.16×10 ³ 14; ε K=0.16 6; ε L=0.019 7; ε M+=0.0046 17			
$(3.7 \times 10^3 \ 3)$	1058.07	5.5 9	1.0 4	5.66 22	6.5 10	av $E\beta$ =1.22×10 ³ 14; ε K=0.14 5; ε L=0.017 6; ε M+=0.0040 14			
$(3.8 \times 10^3 \ 3)$	1004.7	0.58 10	0.10 4	6.68 21	0.68 11	av $E\beta$ =1.25×10 ³ 14; ε K=0.13 5; ε L=0.016 6; ε M+=0.0038 13			
$(4.3 \times 10^3 \ 3)$	475.12	10.5 16	1.1 4	5.76 19	11.6 17	av Eβ=1.50×10 ³ 15; εK=0.082 24; εL=0.010 3; εM+=0.0024 7			
$(4.5 \times 10^3 \ 3)$	265.40	15.9 12	1.4 4	5.70 17	17.3 12	av $E\beta$ =1.59×10 ³ 15; ε K=0.069 19; ε L=0.0085 24; ε M+=0.0020 6			
						E(decay): E β +=3.5 3 MeV in coincidence with the 265.3 γ .			
$(4.5 \times 10^{3#} 3)$	258.76	< 0.92	< 0.079	>6.9	<1.0	av $E\beta = 1.60 \times 10^3$ 15; $\varepsilon K = 0.069$ 19; $\varepsilon L = 0.0085$ 24; $\varepsilon M + = 0.0020$ 6			

[†] From I γ balance in the level scheme.

[‡] Absolute intensity per 100 decays.

[#] Existence of this branch is questionable.

 $\gamma(^{97}\text{Rh})$

Iγ normalization: Σ Iγ((to g.s.)+Iγ(258.76-keV level))=¹⁰⁰,Nodirect ε + β ⁺ decay to ⁹⁷Rh g.s. or to the 258.76-keV level. Production: ⁹⁶Ru(³He,2n) E(³He)=18, 20, 28 MeV. Measured t, Eγ, Iγ, γγ, β ⁻γ;Ge(Li) detectors (2.1keV FWHM) and plastic scintillators. Ru target and ion chem was used for absolute intensity measurements.

Others: 1980Za11, 1969At01.

All data are from 1980Go11.

From comparison of I(188.9 γ) (mainly from ⁹⁷Rh isomeric state decay) to I(421.8 γ) (from ⁹⁷Rh g.s. decay) it was deduced that 2.5% 15 ⁹⁷Pd decays to ⁹⁷Rh 258.76 keV isomeric state. In view of the number of unplaced gammas ($\Sigma I\gamma$ =12.5 7) it is assumed that there is no direct ε + β ⁺ decay to the ⁹⁷Rh 258.76 keV isomeric state. An ε + β ⁺ group with I=1% would have log $f^{4u}t$ =8.5, the allowed limit for first forbidden unique transition.

From I(475.2 γ ⁹⁷Pd decay)/I(421.8 γ ⁹⁷Rh g.s. decay)=0.33 4 and I(421.8 γ)=75 per 100 ⁹⁷Rh g.s. decays I(475.2 γ)=25 3 per 100 ⁹⁷Pd decay. I(475.2 γ)=26.5 15 from internal normalization (assuming no direct ε + β ⁺ decay to ⁹⁷Rh g.s.).

Eγ	Ι _γ #	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult.	α [@]	Comments
209.3 5 265.3 1	3.97 <i>24</i> 100.00	475.12 265.40	(5/2 ⁺ ,7/2) (7/2 ⁺)	265.40 0.0	(7/2 ⁺) 9/2 ⁺	(M1+E2)	0.034 9	$\alpha(K)=0.029 \ 8; \ \alpha(L)=0.0038 \ 13; \\ \alpha(M)=0.00072 \ 25; \\ \alpha(N+)=0.00012 \ 4; \\ \alpha(O)=5.0\times10^{-6} \\ 11$
354.4 5 475.2 <i>1</i>	2.14 <i>15</i> 47.7 <i>25</i>	2113.32 475.12	$(5/2^+, 7/2^+)$ $(5/2^+, 7/2)$	1759.59 0.0	(5/2 ⁺ ,7/2 ⁺) 9/2 ⁺			

Continued on next page (footnotes at end of table)

⁹⁷Pd ε decay **1980Go11** (continued)

				γ (⁹⁷ R	(continued)
E_{γ}	$I_{\gamma}^{\#}$	E _i (level)	J_i^π	E_f	${ m J}_f^\pi$
x556.4 [†] 5 583.0 5 x500 7 5	0.56 <i>3</i> 2.43 22	1058.07	(5/2+)	475.12	(5/2 ⁺ ,7/2)
614.4 5 658.5 5	0.85 <i>4</i> 2.67 <i>14</i>	1619.1 2187.2	(3/2 ⁺ ,5/2,7/2) (3/2,5/2,7/2)	1004.7 1528.7	(3/2 ⁻) (3/2,5/2,7/2)
x685.5 ⁺ 5 745.7 5 792.7 1 862 7 5	3.13 24 2.07 19 24.7 13 1 8 3	1004.7 1058.07 3091 3	$(3/2^{-})$ $(5/2^{+})$ $(3/2^{+}, 5/2^{+}, 7/2^{+})$	258.76 265.40 2229 7	$1/2^{-}$ (7/2 ⁺) (5/2 ⁺ 7/2 ⁺)
x896.6 5 933.7 5 940.3 3	1.13 <i>14</i> 4.4 <i>4</i> 6.7 <i>4</i>	1199.2 1415.5	$(5/2^+, 7/2)$ $(3/2^+, 5/2, 7/2)$	265.40 475.12	$(7/2^+)$ $(5/2^+, 7/2)$
^x 947.4 [†] 5 976.7 5 ^x 1034.4 5	0.89 <i>15</i> 0.95 <i>20</i> 1.9 <i>3</i>	3091.3	(3/2 ⁺ ,5/2 ⁺ ,7/2 ⁺)	2113.32	(5/2+,7/2+)
1053.6 5 1055.4 5 1058.5 5	6.3 <i>13</i> 10.1 7 4.8 4	1528.7 2113.32 1058.07	(3/2,5/2,7/2) $(5/2^+,7/2^+)$ $(5/2^+)$ $(2/2^+,5/2,7/2)$	475.12 1058.07 0.0 265.40	$(5/2^+, 7/2)$ $(5/2^+)$ $9/2^+$ $(7/2^+)$
1150.3 5 1171.8 3 1199.2 5 1237 8 5	1.9 5 6.6 8 1.58 <i>17</i> 3.63 <i>1</i> 9	1415.5 2229.7 1199.2 2295 4	$(3/2^+, 5/2, 7/2)$ $(5/2^+, 7/2^+)$ $(5/2^+, 7/2)$ $(3/2^+, 5/2^+, 7/2^+)$	265.40 1058.07 0.0 1058.07	$(7/2^+)$ $(5/2^+)$ $9/2^+$ $(5/2^+)$
1285.0 5 1354.1 5 1377.4 5	2.50 21 2.36 24 0.75 11	2903.7 1619.1 3607.2	$(5/2^+, 5/2^+, 7/2^+)$ $(5/2^+, 7/2^+)$ $(3/2^+, 5/2, 7/2)$ $(3/2^+, 5/2^+, 7/2^+)$	1619.1 265.40 2229.7	$(3/2^+)$ $(3/2^+, 5/2, 7/2)$ $(7/2^+)$ $(5/2^+, 7/2^+)$
1480.5 <i>5</i> 1494.2 <i>2</i> 1519.8 <i>5</i>	2.22 <i>19</i> 10.9 <i>6</i> 4.0 <i>3</i>	3240.1 1759.59 1994.5	$(5/2^+, 7/2^+) (5/2^+, 7/2^+) (5/2^+, 7/2^+) (5/2^+, 7/2^+) $	1759.59 265.40 475.12	$(5/2^+, 7/2^+)$ $(7/2^+)$ $(5/2^+, 7/2)$
1592.9 5 1638.7 3 1641.1 3	2.87 <i>17</i> 6.7 <i>4</i> 5.9 6	2068.0 2113.32 1906.5	(3/2,5/2,7/2) $(5/2^+,7/2^+)$ (3/2,5/2,7/2) $(5/2^+,7/2^+)$	475.12 475.12 265.40	$(5/2^+, 7/2)$ $(5/2^+, 7/2)$ $(7/2^+)$ $(7/2^+)$
1729.1 5 1759.6 <i>1</i> ×1788.6 [†] 5	12.1 8 1.55 8	1759.59	$(5/2^+,7/2^+)$	0.0	(7/2) 9/2 ⁺
x1797.21 5 1846.8 [‡] 3 x1952.2 [†] 5	2.02 <i>10</i> 5.1 <i>4</i> 1.3 <i>3</i>	2113.32	(5/2+,7/2+)	265.40	(7/2+)
^x 1979.1 [†] 5 1993.9 5 2029.5 5	1.19 <i>6</i> 2.12 <i>18</i> 5.0 <i>4</i>	1994.5 2295.4	$(5/2^+, 7/2^+)$ $(3/2^+, 5/2^+, 7/2^+)$	0.0 265.40	9/2 ⁺ (7/2 ⁺)
2111.4 <i>10</i> x2132.2 <i>10</i> 2231.3 <i>10</i>	0.71 <i>6</i> 1.09 <i>11</i> 1.01 <i>5</i>	2113.32 2229.7	$(5/2^+, 7/2^+)$ $(5/2^+, 7/2^+)$	0.0 0.0	9/2 ⁺ 9/2 ⁺
2408.0 <i>10</i> 2428.4 <i>10</i> *2497.2 <i>10</i>	1.32 <i>15</i> 2.01 <i>25</i> 1.57 <i>15</i>	3607.2 2903.7	$(3/2^+, 5/2^+, 7/2^+)$ $(5/2^+, 7/2^+)$	1199.2 475.12	$(5/2^+,7/2)$ $(5/2^+,7/2)$
2637.1 <i>10</i> 2684.4 <i>10</i> *2777.7 <i>10</i>	0.93 <i>17</i> 2.07 <i>16</i> 0.57 <i>13</i>	2903.7 2950.1	$(5/2^+,7/2^+)$ $(5/2^+,7/2^+)$	265.40 265.40	$(7/2^+)$ $(7/2^+)$
2826.3 10 2903.3 10 2950.3 10 2074 6 10	1.22 1/ 1.24 25 0.61 3	2903.7 2950.1	$(3/2^+, 5/2^+, 1/2^+)$ $(5/2^+, 7/2^+)$ $(5/2^+, 7/2^+)$ $(5/2^+, 7/2^+)$	205.40 0.0 0.0 265.40	$(1/2^+)$ $9/2^+$ $9/2^+$ $(7/2^+)$
2974.6 10 x3017.0 10	2.0 3 0.35 3	3240.1	$(3/2^{+}, 1/2^{+})$	265.40	$(1/2^{+})$

Continued on next page (footnotes at end of table)

$^{97}\mathbf{Pd}\ \varepsilon\ \mathbf{decay}$ 1980Go11 (continued)

$\gamma(2^{\prime} \text{Rh})$ (continued

E_{γ}	$I_{\gamma}^{\#}$	E _i (level)	J_i^π	E_f	\mathbf{J}_f^{π}
^x 3100.9 <i>10</i>	0.26 5				
^x 3155.1 [†] 10	0.69 5				
3239.8 10	0.79 10	3240.1	$(5/2^+, 7/2^+)$	0.0	9/2+
3342.1 10	1.32 24	3607.2	$(3/2^+, 5/2^+, 7/2^+)$	265.40	$(7/2^+)$
x3397.8 10	0.51 4				

[†] Assignment to ⁹⁷Pd decay uncertain.
[‡] Differ by 3σ or more from calculated value.
[#] For absolute intensity per 100 decays, multiply by 0.5603.

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$ ray not placed in level scheme.

 $^{97}_{45}\rm{Rh}_{52}\text{-}5$

⁹⁷Pd ε decay 1980Go11

 $^{97}_{45} Rh_{52}$

 $^{97}_{45}\text{Rh}_{52}\text{-}6$

⁹⁷Pd ε decay 1980Go11

 $^{97}_{45}\text{Rh}_{52}$

6