Adopted Levels, Gammas

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Balraj Singh	ENSDF	30-Oct-2015					

 $Q(\beta^{-})=10063 4$; S(n)=5236 4; S(p)=12728 21; $Q(\alpha)=-797 \times 10^{1} 45$ 2012Wa38 $S(2\pi)=8768 20 S(2\pi)=20220 200 (supt) O(\beta^{-}\pi)=6220 0 (2012Wa28)$

 $S(2n)=8768\ 20,\ S(2p)=29330\ 200\ (syst),\ Q(\beta^-n)=6339\ 9\ (2012Wa38).$

⁹⁷Rb isotope was identified by 1967K106 in ²³⁸U(p,F),E=150 MeV at Orsay, later followed up at the same laboratory by 1969Am01 to the half-life and delayed-neutron emission probability. A large number of half-life and $\%\beta^-n$ measurements by

different groups were made in subsequent years due to the interest in its beta-delayed neutron activity.

Mass measurements: 2012Si10, 2008Su19, 2007Ra23, 2006Ha23.

Additional information 1.

1981Th04: experimental mean square radius, isotope shift, μ , Q.

All measurements deal with mass separated fission products.

2013Fa05: theoretical calculation of half-life and $\%B^-n$.

2010Ro31: theoretical structure calculations.

1985Me20: theoretical structure calculations, shape coexistence.

⁹⁷Rb Levels

Cross Reference (XREF) Flags

A 97 Rb IT decay (5.7 μ s)

B Coulomb excitation

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0.0 68.1 [#] 4	3/2 ⁺ (5/2 ⁺)	169.1 ms 6	AB	%β ⁻ =100; %β ⁻ n=25.5 9; %β ⁻ 2n=? μ=+1.8410 21 (1981Th04,2014StZZ) Q=+0.70 15 (1981Th04,2013StZZ) μ,Q: atomic beam laser spectroscopy (1981Th04). Original measured value of Q=+0.581 44 in 1981Th04 is re-evaluated to +0.70 15 by 2013StZZ. Total of 291 implantations observed, and 164 correlated decay sequences (2012Qu01). J ^π : spin from atomic beam (1981Th04). Measured magnetic moment is consistent with π3/2[431] or π3/2[301], but in the Coulomb excitation experiment, 3/2[301] is ruled out from trend of observed M1 transition rates and B(M1)/B(E2) ratios. See also theoretical calculations by 2010Ro31 which predicts prolate ground state with π3/2[431] Nilsson configuration. T _{1/2} : half-life determined by delayed neutron counting by 1993Ru01, 1983Re10, 1981En05, 1979Ri09, 1977Re05, 1976Ru01, 1974Ro15; β ⁻ counting by 1979En02, 1978Wo09, 1977Re05; γ counting by 1979Pe01; ion-β correlated decay curves by 2011Ni01 and 2012Qu01. T _{1/2} : weighted average of 168 ms <i>I</i> (1993Ru01, earlier value of 172 ms 3 in 1976Ru01); 169 ms 2 (1987PfZX); 169 ms <i>I</i> (1986Wa17, earlier values of 169 ms 2 in 1983Re10, 167 ms 2 from neutron counting and 182 ms 7 from β ⁻ counting in 1977Re05); 200 ms 20 (1981En05, earlier value of 187 ms 19 in 1979En02); 173 ms 3 (1979Pe01); 171 ms 4 (1979Ri09); 170 ms 2 (1978Wo09); 172.2 ms 50 (1974Ro15); 176 ms 5 (1971Tr02). Other recent but much less precise measurements: 208 ms +42-36 (2012Qu06); 0.17 s ⁻¹⁴⁻⁵ (2011Ni01). Value of 135 ms 10 in 1969Am01 seems discrepant. %β ⁻ n: weighted average of 30.9 31 (1993Ru01), 24.5 15 (1987PfZX), 26.1 13 (1986Wa17, earlier values of 26.9 19 in 1983Re10 and 35.9 26 in 1977Re05), 21.5 25 (1981En05), 25.2 18 (1979Ri09), 27.2 30 (1974Ro15). Theoretical T _{1/2} =43.6 ms, %β ⁻ n=13.1, %β ⁻ 2n=0 (2003Mo09).
10.0 2	(1/2, 3/2)	5.7 µs 0	л	/011-100

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

⁹⁷Rb Levels (continued)

E(level) [†]	Jπ‡	XREF	Comments
			T _{1/2} : unweighted average of 5.1 μs 4 (2013Ruo7, from ion-γ time correlation of 76.5γ) and 6.33 μs +37-34 (2012Ka36, γ(t) method; with constant background component separately deduced). Weighted average of the two values is 5.8 μs 6 but reduced χ^2 is 5.3. J ^π : E1 γ to 3/2 ⁺ . Comparison with HFB and QPRM calculations suggests π3/2[312] prolate or (π1/2[321],π3/2[321]) oblate quasiparticle state (2013Ru07), thus favoring 1/2 or 3/2. 2012Ka36, however, propose (5/2), but do not discuss orbital configuration.
191.8 [#] 4	$(7/2^+)$	В	
294.9 [#] 5	$(9/2^+)$	В	
537.6 [#] 6	$(11/2^+)$	В	
674.1 [#] 6	$(13/2^+)$	В	
1029.6 [#] 7	$(15/2^+)$	В	

 † From Coulomb excitation data, except for the 76.6-keV isomer.

[‡] The 68.1 and all levels above 76.6 keV are assigned (2015So20) as members of $\pi 3/2[431]$ band. [#] Band(A): Band built on $\pi 3/2[431]$. Transitional quadrupole moment Q₀=3.9 +7-8, as read from Figure 3 in 2015So20.

 $\gamma(^{97}\text{Rb})$

B(E2) and B(M1) matrix elements deduced from Coulomb excitation experiment (2015So20) are listed in the COULOMB EXCITATION dataset.

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.	α^{\dagger}	Comments
68.1	(5/2+)	68.1	100	0.0 3/2+	[M1+E2]	2.2 18	α (K)=1.8 <i>15</i> ; α (L)=0.34 <i>30</i> ; α (M)=0.056 <i>49</i> ; α (N)=0.0056 <i>49</i> ; α (O)=1.31×10 ⁻⁴ <i>98</i>
76.6	(1/2,3/2) ⁻	76.6 2	100	0.0 3/2+	E1	0.211 4	$\alpha(K)=0.187 \ 3; \ \alpha(L)=0.0206 \ 4;$ $\alpha(M)=0.00337 \ 6; \ \alpha(N)=0.000370 \ 6;$ $\alpha(O)=1.441\times10^{-5} \ 23$ Mult.: from $\alpha(K)(\exp)$. α : from BrIce code
191.8	(7/2+)	123.7	100 3	68.1 (5/2+	(M1+E2)	0.26 19	$\alpha(K)=0.23 \ 16; \ \alpha(L)=0.031 \ 23; \\ \alpha(M)=0.0051 \ 38; \ \alpha(N)=5.4\times10^{-4} \ 40; \\ \alpha(O)=1.8\times10^{-5} \ 12$
		191.8	7.4 3	0.0 3/2+	[E2]	0.0888	α (K)=0.0773 <i>11</i> ; α (L)=0.00974 <i>14</i> ; α (M)=0.001605 <i>23</i> ; α (N)=0.0001735 <i>25</i> ; α (O)=6.21×10 ⁻⁶ <i>9</i>
294.9	(9/2+)	103.1	100.0 19	191.8 (7/2+	(M1+E2)	0.50 37	$\alpha(K)=0.43 \ 31; \ \alpha(L)=0.063 \ 50; \ \alpha(M)=0.0104 \ 82; \ \alpha(N)=0.00109 \ 84; \ \alpha(\Omega)=3 \ 3\times 10^{-5} \ 23$
		226.8	23.9 10	68.1 (5/2+	(E2]	0.0485	$\alpha(K) = 0.0424 \ 6; \ \alpha(L) = 0.00518 \ 8; \ \alpha(M) = 0.000853 \ 12; \ \alpha(N) = 9.30 \times 10^{-5} \ 13; \ \alpha(Q) = 3.45 \times 10^{-6} \ 5$
537.6	(11/2+)	242.7	100 3	294.9 (9/2+	(M1+E2)	0.026 13	$\begin{array}{l} \alpha(\text{C}) = 0.13 \times 10^{-5} \\ \alpha(\text{K}) = 0.023 \ 11; \ \alpha(\text{L}) = 0.0027 \ 14; \\ \alpha(\text{M}) = 4.4 \times 10^{-4} \ 22; \ \alpha(\text{N}) = 4.9 \times 10^{-5} \ 24; \\ \alpha(\text{O}) = 1.91 \times 10^{-6} \ 83 \end{array}$
		345.8	40.0 21	191.8 (7/2+	E2]	0.01118	$\alpha(\text{M}) = 0.00983 \ 14; \ \alpha(\text{L}) = 0.001137 \ 16; \ \alpha(\text{M}) = 0.000187 \ 3; \ \alpha(\text{N}) = 2.07 \times 10^{-5} \ 3; \ \alpha(\text{O}) = 8.23 \times 10^{-7} \ 12$
674.1	(13/2 ⁺)	136.5	61 11	537.6 (11/2	(M1+E2) [M1+E2]	0.19 13	$\alpha(G)=0.16\ 11;\ \alpha(L)=0.021\ 16;$

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

$\gamma({}^{\prime\prime}\text{Rb})$ (contin	iuea)
--	-------

E _i (level)	\mathbf{J}_i^π	Eγ	Iγ	\mathbf{E}_{f}	J_f^{π}	Mult.	α^{\dagger}	Comments
674.1	(13/2+)	379.2	100 9	294.9	(9/2+)	[E2]	0.00823	$\alpha(M)=0.0035 \ 25; \ \alpha(N)=3.8\times10^{-4} \ 27; \alpha(O)=1.28\times10^{-5} \ 79 \alpha(K)=0.00725 \ 11; \ \alpha(L)=0.000830 \ 12; \alpha(M)=0.0001368 \ 20; \ \alpha(N)=1.52\times10^{-5} \ 2; \alpha(O)=6 \ 10\times10^{-7} \ 9$
1029.6	(15/2+)	355.5	100 17	674.1	(13/2+)	[M1+E2]	0.0078 25	$\alpha(K) = 0.0068 \ 22; \ \alpha(L) = 7.7 \times 10^{-4} \ 26; \alpha(M) = 1.28 \times 10^{-4} \ 43; \ \alpha(N) = 1.43 \times 10^{-5} \ 47; \alpha(O) = 5.8 \times 10^{-7} \ 17$
		492.0	61 11	537.6	(11/2+)	[E2]	0.00360	$\alpha(K)=0.00318 5; \alpha(L)=0.000357 5; \alpha(M)=5.88\times10^{-5} 9; \alpha(N)=6.58\times10^{-6} 10; \alpha(O)=2.71\times10^{-7} 4$

[†] From BrIcc v2.3b (16-Dec-2014) 2008Ki07, "Frozen Orbitals" appr. Value overlaps M1 and E2 for mult=[M1+E2].

Adopted Levels, Gammas

Level Scheme

 $^{97}_{37}\text{Rb}_{60}$

Adopted Levels, Gammas

 $^{97}_{37} Rb_{60}$