96 Mo(d,p γ) 1975Di15

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 111, 525 (2010)	19-Nov-2009

⁹⁷Mo Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	5/2+		
481.0	$3/2^{+}$		
658.0	7/2+		
679.5	$1/2^{+}$		
719.4	5/2+		J^{π} : 1/2,3/2 from 238.4 γ excit.
720.8	$3/2^{+}$		
888.4	$1/2^{+}$		J^{π} : 1/2,3/2 from 407.4 γ excit.
1024.4	7/2+		J^{π} : 5/2,7/2 from 1024.4 γ excit.
1092.5	3/2+		
1116.6	9/2+		J^{π} : 7/2,9/2 from 1116.6 γ excit.
1265.0	$3/2^+, 5/2^+$		
1268.5	7/2+		
1284.5	$3/2^+, 5/2^+$		
1437.0	$11/2^{-}$	<30 ns	J^{π} : 11/2,13/2 from 320.4 γ excit.
			$T_{1/2}$: from d(320.4 γ)(t).
1516.0	$9/2^{+}$		
1547.7	$1/2^{+}$		
1558.4	5/2-,7/2-		
1565.5	(7/2)		

[†] From 1975Di15, deduced from E γ . [‡] From Adopted Levels.

$\gamma(^{97}\text{Mo})$

ED=8 MeV;Ge(Li) detectors, FWHM=2.3-3 keV.

Measured E γ , I γ , Ice, $\gamma\gamma$, p γ , $\gamma(\theta)$, d $\gamma(t)$, excit.

 \mathbf{b}

E _i (level)	\mathbf{J}_i^π	E_{γ}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α [@]	Comments
481.0	3/2+	481.0 2	236 35	0.0	5/2+	M1+E2	+0.47 3	0.00445	$\alpha(K)=0.00391; \alpha(L)=0.00045$
658.0	7/2+	658.0 2	100	0.0	5/2+	M1+E2	-0.05 3	0.00207	Mult.: $\alpha(K)\exp=0.0042$ 7 (theory $\alpha(K)=0.00391$). $\alpha(K)=0.00180$; $\alpha(L)=0.000201$ Mult.: $\alpha(K)(M1)=0.00182$ assumed for normalization of α_{0} and α_{0} spaces (theory $\alpha(K)=0.00180$)
670.5	1/2+	100.0^{a} 5	~2#	481.0	3/2+				ce- and y- spectra. (meory $a(\mathbf{K})=0.00180$).
079.5	1/2	679.5 2	185 10	401.0	$5/2^+$	E2		0.00203	$\alpha(K)=0.00176; \alpha(L)=0.00020$
					- /				Mult.: α (K)exp=0.0019 2 (theory: α (K)=0.00176).
719.4	5/2+	238.4 2	32 2	481.0	3/2+	M1+E2	-0.06 6	0.0245	$\alpha(K)=0.0215; \ \alpha(L)=0.00248$
		71946	80 30	0.0	5/2+	M1+F2	-0.47 10	0.00170	Mult.: $\alpha(K) \exp = 0.044 / (\text{theory: } \alpha(K) = 0.0215).$ $\alpha(K) = 0.00148; \alpha(L) = 0.00017$
		/1).10	00 50	0.0	5/2	MII LL2	0.17 10	0.00170	Mult.: $\alpha(K) \exp[=0.0019 \ 9]$ (theory: $\alpha(K) = 0.00148$).
720.8	3/2+	720.8 6	80 <i>30</i>	0.0	5/2+	M1+E2	-0.19 9	0.00168	$\alpha(K)=0.00147; \ \alpha(L)=0.00016$
000 1	4 / 2 ±		a a a	101.0	a (a +	8		0.00540	Mult.: $\alpha(K) \exp[=0.0019 \ 9 \ (theory: \alpha(K)=0.00147).$
888.4	1/2+	407.4 2	38.5	481.0	3/2+	M1(+E2)		0.00642	Mult.: $\alpha(K)\exp=0.0052$ 9 (theory: $\alpha(K)(M1)=0.00559$, $\alpha(K)(F2)=0.000776$)
		888.0 7	4 1	0.0	5/2+	E2		0.00103	$\alpha(\mathbf{K})(\mathbf{E}_{2})=0.000770).$ $\alpha(\mathbf{K})=0.000895; \ \alpha(\mathbf{L})=0.000102$
1024.4	$7/2^{+}$	1024.4 3	57 6	0.0	5/2+	M1+E2	-0.54 + 14 - 24		Mult.: $\alpha(K) \exp = 0.00066 \ 21$ (theory $\alpha(K) = 0.00067$).
1092.5	3/2+	203.8 ^a 9	≈2 [#]	888.4	$1/2^{+}$				
		1092.5 <i>3</i>	40 4	0.0	5/2+	M1+E2	+0.51 +24-15		Mult.: $\alpha(K) \exp = 0.00083 \ 21$ (theory: $\alpha(K) = 0.00058$).
1116.6	9/2+	1116.6 3	63 6	0.0	$5/2^{+}$	E2			Mult.: $\alpha(K) \exp = 0.00044 \ 10$ (theory: $\alpha(K) = 0.000530$).
1265.0	$3/2^+, 5/2^+$	783.9 ^a 6	≈2 #	481.0	3/2+				
		1265.1 5	50 10	0.0	5/2+	0_			
1268.5	7/2+	549.8 4	12 3	719.4	5/2+	M1,E2		0.0034 2	Mult.: α (K)exp=0.0037 <i>13</i> (theory: α (K)(M1)=0.00273, α (K)(E2)=0.00315).
		787.9 6	13 <i>3</i>	481.0	3/2+	M1,E2 ^{&}		0.00138	Mult.: $\alpha(K)\exp=0.00093 \ 33$ (theory: $\alpha(K)(M1)=\alpha(K)(E2)=0.00120).$
		1268.2 5	28 5	0.0	$5/2^{+}$				
1284.5	3/2+,5/2+	803.1 <i>3</i>	28 4	481.0	3/2+	M1,E2 ^{&}		0.00132	Mult.: $\alpha(K)\exp=0.00083 \ 23$ (theory: $\alpha(K)(M1)=\alpha(K)(F2)=0.00115$)
		1284.8 5	10 3	0.0	5/2+	M1+E2	-0.8 +3-4		
1437.0	$11/2^{-}$	320.4 3	34 6	1116.6	9/2+	E1 ^{&}		0.00466	α (K)=0.00406; α (L)=0.000455
									Mult.: $\alpha(K) \exp = 0.0042 \ 15$ (theory: $\alpha(K) = 0.00406$).
1516.0	$9/2^+$	1516.1 10	10 3	0.0	$5/2^+$	E2			
1547.7	1/2'	1066./ 5	10 2	481.0	5/2			0.00045	
1558.4	5/2-,7/2-	838.6 5	15 4	719.4	5/2+	(E1) ^{&}		0.00047 4	$\alpha(K)=0.000413; \ \alpha(L)=0.000454$ Mult.: $\alpha(K)\exp=0.00060 \ 27$ (theory $\alpha(K)=0.000413$).

 $^{97}_{42}\mathrm{Mo}_{55}$ -2

⁹⁷₄₂Mo₅₅-2

96 Mo(d,p γ) 1975Di15 (continued)

$\gamma(^{97}Mo)$ (continued)

E_i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}^{\dagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Comments		
1558.4 1565.5	5/2 ⁻ ,7/2 ⁻ (7/2)	1077.4 <i>5</i> 1565.5 <i>6</i>	10 2 14 3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	E_{γ} : not included in adopted level scheme because of poor energy fit.		
[†] Relative I γ measured at θ =55°.							

 ‡ From adopted gammas, unless otherwise noted.

[#] Derived from the p(320.4 γ) coincidence measurements. [@] For M1(+E2) transitions, the value quoted is α (M1); for M1,E2 transition the value given includes both α (M1) and α (E2).

[&] M determined in this data set. ^a This γ not found deexciting this level in other data sets.

 $x \gamma$ ray not placed in level scheme.

⁹⁶Mo(d,pγ) 1975Di15

Level Scheme

Intensities: Relative photon branching from each level

