82 Se(19 F,p3n γ) **2001Bu01**

_		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	N. Nica	NDS 111, 525 (2010)	19-Nov-2009

E=68 MeV, 92% enriched target, energy and efficiency calibration with ¹⁵²Eu source. Measured E γ , I γ , $\gamma\gamma$, neutron- γ , proton- γ coin using Ge detectors for gamma rays and NE213 for neutrons and Δ E-E Si detectors for charged particles at different angles. measured angular distributions In single and n γ coin mode, and DCO ratios. IBFM theoretical calculations.

⁹⁷ Mo Levels

E(level) [†]	J π ‡	E(level) [†]	Jπ‡	E(level) [†]	J ^π ‡	E(level) [†]	Jπ‡
0.0 [#]	5/2+	1436.71 ^{&} 10	11/2-	2712.21 [@] 18	17/2+	3747.72 [@] 23	$21/2^+$
658.14 [@] 8	$7/2^{+}$	1920.27 [#] 13	$(13/2^+)$	2725.01 ^{&} 18	19/2-	4472.42 [@] 25	$25/2^+$
1116.67 [#] 8	9/2+	2002.11 ^{&} 15	$15/2^{-}$	2828.71 [@] 20	$19/2^{+}$	4518.42 ^{&} 23	$27/2^{-}$
1409.41 [@] 10	$11/2^+$	2433.91 [@] 15	$15/2^+$	3571.42 ^{&} 20	$23/2^{-}$	5502.33 ^{&} 25	31/2-

[†] From a least squares fit to $E\gamma'$ s assuming $\Delta E\gamma = \pm 0.1$ keV.

[‡] ADOPTED by 2001Bu01; can differ from adopted values (see Adopted Levels dataset).

[#] Band(A): $\nu d_{5/2}$ band.

[@] Band(B): vg_{7/2} band.

& Band(C): $vh_{11/2}$ band.

$\gamma(^{97}Mo)$

The population of P3N evaporation channel estimated to Be 5% of the total fusion cross section (28 mb).

The assignment of γ 's to 97 Mo had been confirmed by observing all of them In coin with both neutrons and protons, but not with α particles.

DCO ratios were measured from an asymmetric $\gamma\gamma$ coin matrix with one detector At 90° and the other At 45°. They were

measured In quadrupole gates, unless otherwise stated. According to 2001Bu02 the DCO ratio for a dipole transition is close to 0.5 when gating on a quadrupole transition and 1.0 when gating on a dipole transition; and the DCO ratio for a quadrupole transition is close to 1.0 when gating on a quadrupole transition and 2.0 when gating on a dipole transition.

Legendre polynomial coefficients are determined from angular distributions measured In coin with neutrons.

Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f J ²	$\frac{\pi}{f}$ Mult. [‡]	Comments
116.5	18.8 15	2828.71	19/2+	2712.21 17/	2 ⁺ D	$A_2 = -0.06 5.$ $A_4 = -0.12 6$
278.3	33.9 <i>17</i> 14 3 <i>11</i>	2712.21	$17/2^+$ $11/2^+$	2433.91 15/	2+ D	DCO=0.45 12.
320.2	65.4 23	1436.71	11/2-	1116.67 9/2	+ D	DCO= $0.57\ 6.$ $A_2 = -0.45\ 11.$ $A_4 = +0.05\ 14$
458.6	5.0 20	1116.67	$9/2^{+}$	658.14 7/2	+	14 10.05 17.
565.4	75 3	2002.11	15/2-	1436.71 11/	2 ⁻ (E2)	DCO=1.80 24 (dipole gated). A ₂ =+0.35 5. A ₄ =-0.10 6.
658.1	46.9 24	658.14	$7/2^{+}$	0.0 5/2	+ D	DCO=0.50 11.
722.9	70 5	2725.01	$19/2^{-}$	2002.11 15/	(E2)	DCO=1.06 16.
724.7 751.3 778.4	16 4 22.9 18 16 4	4472.42 1409.41 1436.71	25/2 ⁺ 11/2 ⁺ 11/2 ⁻	3747.72 21/ 658.14 7/2 658.14 7/2	2^+ (E2) + (E2) +	DCO=2.3 7 (dipole gated). DCO=2.0 4 (dipole gated).
			, –			

Continued on next page (footnotes at end of table)

				-	82 Se(19 F,p3n γ)		2001Bu01 (continued)
γ ⁽⁹⁷ Mo) (continued)							
Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult. [‡]	Comments
803.6	26 5	1920.27	(13/2 ⁺)	1116.67	9/2+	Q	Mult.: cited by 2001Bu01 As from 1971Le20; E2 In ${}^{96}Zr(\alpha,3n\gamma)$ (same REF.).
846.4	47 5	3571.42	$23/2^{-}$	2725.01	$19/2^{-}$	(E2)	DCO=0.87 18.
919.0	20 3	3747.72	$21/2^{+}$	2828.71	$19/2^{+}$	D	DCO=1.20 25 (dipole gated).
947.0	31 <i>3</i>	4518.42	$27/2^{-}$	3571.42	$23/2^{-}$	(E2)	DCO=0.88 17.
983.9	23 <i>3</i>	5502.33	$31/2^{-}$	4518.42	$27/2^{-}$	(E2)	DCO=0.87 26.
1024.5	27 4	2433.91	$15/2^{+}$	1409.41	$11/2^{+}$	(E2)	DCO=2.4 4 (dipole gated).
1116.7	100 5	1116.67	9/2+	0.0	5/2+	(E2)	DCO=1.7 3 (dipole gated). A ₂ =+0.50 6. A ₄ = $-0.06 8$.

[†] From the spectrum At 55° measured In coin with protons, except for 778.4 γ , 846.4 γ , and 947.0 γ (contaminated with transitions In ⁹⁶Mo) which were estimated from gates on the symmetric $\gamma\gamma$ matrix.

[±] ADOPTED by evaluator based on angular distribution coefficients or DCO ratios measured by 2001Bu01 considering $\Delta J=2$, Q As $\Delta J=2$, (E2); all the other reported mult's are of the $\Delta J=1$, D type and are adopted As such.

⁹⁷₄₂Mo₅₅

⁸²Se(¹⁹F,p3nγ) 2001Bu01

⁹⁷₄₂Mo₅₅