Adopted Levels

Type Author Citation Literature Cutoff Date

Full Evaluation N. Nica NDS 111,525 (2010) 19-Nov-2009

 $Q(\beta^-)=-1.33\times 10^4\ syst;\ S(n)=1.30\times 10^4\ syst;\ S(p)=3.2\times 10^3\ syst;\ Q(\alpha)=-3.7\times 10^3\ syst$ 2012Wa38 Note: Current evaluation has used the following Q record $-1360E+1\ syst\ 1257e^+1syst\ 3320\ syst$ 2003Au03. Uncertainties based on systematics are: $\Delta Q(\beta^-)=720,\ \Delta S(n)=640,\ \Delta S(p)=570,\ \Delta Q(\alpha)=570.$ $Q(\varepsilon p)=8340\ 430\ (based on syst).$

1997Sc30: 60 Ni(40 Ca,3ny), E=4.1 MeV/u. Measured E γ , I γ , $\gamma\gamma$, X γ , β p, T_{1/2}. Predicts a 25/2+, T_{1/2}=0.6 s high-spin isomer. 1982Ku15: 60 Ni(40 Ca,3n γ), E=4.0 MeV/u, mass separation. Detected p, $\alpha\gamma$ and Pd K x ray, and (p)(K x ray). Measured T_{1/2}. Possibly the 25/2+ high-spin isomer predicted by 1983Og01 (probably not same level as seen by 1978El09).

 $1978E109 \colon S(n)(p,3pxn\gamma), \ E=600 \ MeV, \ chem. \ Detected \ p, \ 1 \ MeV < E(p) < 5 \ MeV. \ Production \ rate \ too \ low \ for \ T_{1/2} \ determination.$

Calculations:

high spin isomer: 2005Gr34, 1985Bu25, 1983Og01, 1971Pe16 mass differences: 2002Is08 single- and double- Λ hypernucleus: 2001Kh06 $T_{\rm I/2}$ g.s.: 1997He24

97Cd Levels

 $\frac{\text{E(level)}}{0.0}$ $\frac{\text{J}^{\pi}}{(9/2^{+})}$ $\frac{\text{T}_{1/2}}{2.8 \text{ s } 6}$

Comments

 $%\varepsilon$ =100; $%\varepsilon$ p=? E(level), J^{π} , $T_{1/2}$: $T_{1/2}$ measured by βp coin (1997Sc30); pγ coin data showed coin with $6^+ - 4^+ - 2^+$ cascade in 97 Cd, whence the conclusion that the observed $T_{1/2}$ is that of the 97 Cd g.s. (while admixture of other activities is not excluded, especially from the hypothetical 25/2+ isomer of 97 Cd); this also suggests the tentative J^{π} assignment for 97 Cd g.s.. Other value: 3 s +4-2 (1982Ku15).