⁹⁶Y β⁻ decay (9.6 s) 1987StZX

	Hist	tory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	D. Abriola(a), A. A. Sonzogni	NDS 109, 2501 (2008)	1-Apr-2008

Parent: ⁹⁶Y: E=1140 30; J^{π}=(8⁺); T_{1/2}=9.6 s 2; Q(β^-)=7096 23; % β^- decay=100.0 1995HaZT,1997RaZZ: SF of ²⁵²Cf; measured E γ , I γ , $\gamma\gamma\gamma$ coin data at the γ -sphere; experimental details not available.

1991OhZZ,1990OhZZ,1990Oh02: measured T_{1/2 1/2} by $\beta\gamma\gamma$ coin.

1987StZX,1987St12,1988StZS: measured E γ , I γ , $\gamma\gamma$ coin, $\gamma\gamma(\theta)$. 1975Sa15: studied both g.s. and isomeric decay of ⁹⁶Y; measured E γ , I γ , $\gamma\gamma$ coin, E β , T_{1/2 1/2}.

1975K111: identification of 96 Y decay with T_{1/2} ${}_{1/2}$ =9.6 s 3 from chemical separation of fission products; measured E γ , I γ , $\gamma\gamma$ coin.

Decay scheme is from 1987StZX. This decay scheme and that of 1995HaZT, 1997RaZZ are very similar, except for the differences pointed out in comments.

⁹⁶Zr Levels

E(level) [†]	J ^{π#}	T _{1/2}	Comments
0.0	0+		
1582.5 1	0^{+}		
1750.6 2	2+		J=2 from Δ J=2 transition to 0 ⁺ .
1897.6.2	3-	46 ps 15	$I=3$ from $\Lambda I=1$ transition to 2^+ .
107/10 2	0	10 po 10	$T_{1/2}$; from 1990QhQ2, 1990QhZZ, Other: 84 ps 44 (1988Mo27).
2226.2.2	2^{+}		L_{2}^{2} from AL=2 transition to 0 ⁺
2781.6?.3	-		
2857.8.2	4+		I=4 from Δ I=2 transitions to 2 ⁺ and Δ I=1 transition to 3 ⁻
3082.6.5	4+		
3120 5 3	5-		$I=5$ from $\Lambda I=2$ transition to 3^{-}
3177.0.3	4^{+}		
3309.9.2	$(4^+ 5^+ 6^+)$		
3483.6.5	(+ ,5 ,0) 6 ⁺	25 ps 0	$I-6$ from $AI-1$ transition to 5^-
5405.0 5	0	25 ps 7	J_{-0} from 19910b77
3749 1 3	Δ^+		1/2. Hom 199101222.
377261	+ 6 ⁺		I-6 from AI-2 transition to A^+ and AI-1 transition to 5 ⁻
3772.01	0		$J=0$ from $\Delta J=2$ transition to 4 and $\Delta J=1$ transition to 5.
3924.3*			
4126.9 3	(4+)		
4235.1 3	7-		
4261.6 6	$(5^+, 6^+)$		
4389.8 2	8+	127 ps <i>10</i>	J=8 from Δ J=2 transitions to 6 ⁺ .
			T _{1/2} : from 1990OhZZ, 1991OhZZ.
4570.5 <i>4</i>	$(5^{-},6^{+})$		
4690.1 5			
4751.8 2	$(7,8^{+})$		
4757.1			
4846.0 4			
4907.2.3			
5066 5 2	$(7^+ 8^+)$		
5118 1 3	(, ,0)		
5235 6 10	(7.8^{+})		
5507.9.3	$(7^+ 8^+)$		I^{π_1} (10 ⁺) according to 1995HaZT 1997RaZZ; supporting arguments not available
5629.2.3	(, ,0)		. (10) according to 1)/ortale1, 1)/(table, supporting arguments not available.
5900 1 3			
5700.1 5			

[†] From 1987StZX, unless indicated otherwise.

[‡] From 1995HaZT, 1997RaZZ; not reported by 1987StZX.

[#] From Adopted Levels; supporting arguments mainly from $\gamma\gamma(\theta)$ in 1988StZS are given in comments.

96 Y β^- decay (9.6 s) 1987StZX (continued)

β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft		Comments	
$(2.34 \times 10^3 4)$	5900.1	0.7 1	5.87 7	av Eβ=953 18		
$(2.61 \times 10^3 4)$	5629.2	0.9 <i>3</i>	5.96 15	av E β =1079 18		
$(2.73 \times 10^3 4)$	5507.9	5.8 8	5.23 7	av E β =1136 <i>18</i>		
$(3.00 \times 10^3 4)$	5235.6	1.2 3	6.09 12	av E β =1265 18		
$(3.17 \times 10^3 4)$	5066.5	4.1 7	5.66 8	av Eβ=1345 18		
$(3.39 \times 10^3 4)$	4846.0	0.9 2	6.44 10	av E β =1450 18		
$(3.48 \times 10^3 4)$	4751.8	2.5 9	6.05 16	av E β =1495 18		
$(3.55 \times 10^3 4)$	4690.1	0.5 1	6.78 9	av E β =1524 18		
$(3.67 \times 10^3 4)$	4570.5	0.9 <i>3</i>	6.59 15	av E β =1581 18		
$(3.85 \times 10^3 4)$	4389.8	80.9 96	4.73 6	av Eβ=1668 18		
$(4.00 \times 10^3 \ 4)$	4235.1	1.6 7	6.51 20	av Eβ=1742 18		

[†] From 1987StZX. These are not the same as the I β obtained from I γ normalization=0.0880 and the I γ balance. However, if I(γ +ce)(1582) is neglected, one obtains an I γ normalization=0.0893 and if the I β thus obtained to the eleven levels from 4235 to 5900 keV are arbitrarily renormalized to add up to 100, one obtains the I β from 1987StZX which are higher by about 13.8%.

[‡] Absolute intensity per 100 decays.

From ENSDF

$\gamma(^{96}\mathrm{Zr})$

Iy normalization: $\Sigma I \gamma$ (to g.s.)=100, assuming that the g.s. β^- feeding is zero, and includes a 1.5% contribution from the 1582 keV E0 transition.

${\rm E_{\gamma}}^{\dagger}$	Ι _γ ‡&	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{\#}$	$\alpha^{\boldsymbol{b}}$	Comments
132.9	10	3309.9	$(4^+, 5^+, 6^+)$	3177.0 4+				
146.653 [@] 10	387	1897.6	3-	1750.6 2+	(E1)		0.0371	α (K)=0.0327 5; α (L)=0.00366 6; α (M)=0.000632 9; α (N)=8.84×10 ⁻⁵ 13; α (O)=5.80×10 ⁻⁶ 9 α (N+)=9.42×10 ⁻⁵ 14
154.7	5	4389.8	8+	4235.1 7-	[E1]		0.0317	Mult.: $\Delta J=1$ transition to 2 ⁺ . $\alpha(K)=0.0280 \ 4; \ \alpha(L)=0.00313 \ 5; \ \alpha(M)=0.000540 \ 8;$ $\alpha(N)=7.57\times10^{-5} \ 11; \ \alpha(O)=4.99\times10^{-6} \ 7$
173.7	24	3483.6	6+	3309.9 (4+,5+,6+)	(M1)		0.0452	$\alpha(N+)=8.0/\times10^{-5} I2$ $\alpha(K)=0.0397 \ 6; \ \alpha(L)=0.00456 \ 7; \ \alpha(M)=0.000794$ $I2; \ \alpha(N)=0.0001124 \ I6; \ \alpha(O)=7.81\times10^{-6} \ I1$ $\alpha(N+.)=0.0001202 \ I7$
189.4	4	3309.9	$(4^+, 5^+, 6^+)$	3120.5 5-				
224.8	4	3082.6	4 ⁺	2857.8 4+				
227.3	16	3309.9	(4+,5+,6+)	3082.6 4+	E2		0.0569	$\alpha(K)=0.0492$ 7; $\alpha(L)=0.00641$ 9; $\alpha(M)=0.001116$ 16; $\alpha(N)=0.0001530$ 22; $\alpha(O)=8.73\times10^{-6}$ 13
289.0	10	3772.6	6+	3483.6 6+	(M1(+E2))	-0.4 5	0.014 4	$\begin{aligned} &\alpha(N+)=0.000161723\\ &\alpha(K)=0.012\ 4;\ \alpha(L)=0.0014\ 5;\ \alpha(M)=0.00024\ 8;\\ &\alpha(N)=3.5\times10^{-5}\ 11;\ \alpha(O)=2.3\times10^{-6}\ 6\\ &\alpha(N+)=3.7\times10^{-5}\ 12\\ &\delta:\ \text{from }\gamma\gamma(\theta)\ (1987\text{St}12). \end{aligned}$
314.7	7	5066.5	$(7^+, 8^+)$	4751.8 (7,8 ⁺)				
328.6	6	2226.2	2+	1897.6 3-	(E1(+M2))	-0.02 5	0.00381 16	$\alpha(K)=0.00336 \ 14; \ \alpha(L)=0.000372 \ 17; \\ \alpha(M)=6.4\times10^{-5} \ 3; \ \alpha(N)=9.1\times10^{-6} \ 5; \\ \alpha(O)=6.2\times10^{-7} \ 3 \\ \alpha(N+)=9.7\times10^{-6} \ 5$
335.4	3	4570.5	$(5^{-},6^{+})$	4235.1 7-				
363.1	256	3483.6	6+	3120.5 5-	E1		0.00291	$\alpha(K)=0.00257 \ 4; \ \alpha(L)=0.000284 \ 4; \\ \alpha(M)=4.91\times10^{-5} \ 7; \ \alpha(N)=6.94\times10^{-6} \ 10; \\ \alpha(O)=4.78\times10^{-7} \ 7 \\ \alpha(N+)=7.42\times10^{-6} \ 11 \\ N \ A \ A \ A \ A \ A \ A \ A \ A \ A \$
401.0	3	3183 6	6+	3082.6 1+				$\Delta \mathbf{J} = 1 \text{ transition to } \mathbf{J} \ .$
401.0	3 4	5405.0	$(7^+ 8^+)$	5062.04 5066 5 (7+ 8+)				
455.0	+ 4	4690 1	(7,0)	$4235 1 7^{-}$				
462.7	5	3772.6	6+	723000 (4^+ 5 ⁺ 6 ⁺)				
475.6	35	2226.2	2+	1750.6 2+	M1+E2	-0.09 +1-2	0.00360	$\alpha(K)=0.00318$ 5; $\alpha(L)=0.000354$ 5;

					$^{96}Y\beta^{-}$ dec	ay (9.6 s)	1987StZX (c	continued)
						$\gamma(^{96}\text{Zr})$	(continued)	
E_{γ}^{\dagger}	Ι _γ ‡&	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{\#}$	α^{b}	Comments
				<i>J</i>				$\alpha(M)=6.16\times10^{-5} 9; \alpha(N)=8.75\times10^{-6} 13;$
								$\alpha(O)=6.19\times10^{-7} 9$
								α (N+)=9.36×10 ⁻⁶ 14
								δ : +0.1 2 from $\gamma\gamma(\theta)$ (1987St12).
489.0	11	4261.6	$(5^+, 6^+)$	3772.6 6+				
517.4	12	4907.2		4389.8 8				E , from difference in anomaly of initial and final lavala
322.0	55	4/37.1		4255.1 /				E_{γ} : from difference in energy of minar and minar levels, 517.2 keV (1995HaZT, 1997RaZZ). 1987StZX report a 517.4 keV γ with I γ =12 depopulating the 4907 level which is not seen by 1995HaZT, 1997RaZZ.
600.7	5	5507.9	$(7^+, 8^+)$	4907.2				-
617.2	625	4389.8	8+	3772.6 6+	E2		0.00228	$\alpha(K)=0.00201 \ 3; \ \alpha(L)=0.000230 \ 4; \ \alpha(M)=3.99\times10^{-5} \ 6;$
								$\alpha(N)=5.61\times10^{-6} 8; \alpha(O)=3.78\times10^{-7} 6$
								α (N+)=5.99×10 ⁻⁶ 9
()(0	2492 ((+	2057.0 4+				Mult.: $\Delta J=2$ transition to 6^+ .
626	8	3483.6	6'	2857.8 4				E_{γ},I_{γ} : from 198/St12.
631.45 ^w 4	85	2857.8	4+	2226.2 2+	E2(+M3)	-0.02 8	0.00215 12	$\alpha(K)=0.00189 \ 11; \ \alpha(L)=0.000216 \ 13; \ \alpha(M)=3.75\times10^{-5} \\ 22; \ \alpha(N)=5.3\times10^{-6} \ 4; \ \alpha(O)=3.56\times10^{-7} \ 21 \\ \alpha(N+)=5.6\times10^{-6} \ 4$
								Mult.: $\Delta J=2$ transition to 2^+ .
643.7	17	2226.2	2+	1582.5 0+	E2		0.00203	α (K)=0.00179 3; α (L)=0.000204 3; α (M)=3.54×10 ⁻⁵ 5; α (N)=4.99×10 ⁻⁶ 7; α (O)=3.37×10 ⁻⁷ 5
								α (N+)=5.33×10 ⁻⁶ 8
652.1	17	3772.6	6+	3120.5 5-	(E1)		6.98×10^{-4}	α (K)=0.000617 9; α (L)=6.75×10 ⁻⁵ 10; α (M)=1.169×10 ⁻⁵ 17; α (N)=1.658×10 ⁻⁶ 24
								α (O)=1.165×10 ⁻⁷ <i>17</i> ; α (N+)=1.775×10 ⁻⁶ 25 Mult.: Δ J=1 transition to 5 ⁻ .
676.7	4	5066.5	$(7^+, 8^+)$	4389.8 8+				
690.0	13	3772.6	6+	3082.6 4+				
719.1	9	4846.0		4126.9 (4 ⁺)				
728.3	10	5118.1	(7+0+)	4389.8 8+				
750.5	5	5507.9	(7,8)	4757.1				E_{γ} : from 1995HaZT, 1997/RaZZ; not observed by 1987StZX.
751.5	8	4235.1	7-	3483.6 6+				
756.1	11	5507.9	$(7^+, 8^+)$	4751.8 (7,8 ⁺)				
778.0	13	4261.6	$(5^+, 6^+)$	3483.6 6+				
804.7	18	3924.3		3120.5 5				E_{γ} , I_{γ} : from 1995HaZT, 1997RaZZ; 1987StZX show this γ
804.9	14	5066.5	(7 ⁺ ,8 ⁺)	4261.6 (5+,6+	-)			with $1\gamma=14$ depopulating the 5007 level. E_{γ} : 1995HaZT, 1997RaZZ show a 804.7 keV γ , $I\gamma=18$ depopulating a 3924.3 level not observed by 1027547X
845 8	7	5235.6	(7.8^{+})	4389.8 8+				depopulating a 3927.3 rever not observed by 190/SIZA.
857.4	1	3082.6	(7,0) 4 ⁺	2226.2 2+	[E2]		9.67×10^{-4}	$\alpha(K) = 0.000852 \ 12; \ \alpha(L) = 9.55 \times 10^{-5} \ 14;$

4

						$^{96}Y\beta^{-}$	decay (9.6 s) 1987StZX (continued)	
							γ (⁹⁶ Z	r) (continued)		
	E_{γ}^{\dagger}	Ι _γ ‡&	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	δ#	$\alpha^{\boldsymbol{b}}$	$I_{(\gamma+ce)}^{a}$	Comments
										α (O)=1.620×10 ⁻⁷ 23; α (N+)=2.51×10 ⁻⁶ 4 E _{γ} : from 1995HaZT, 1997RaZZ; not observed by 1987StZX.
	884.0 ^c 906.2	8 230	2781.6? 4389.8	8+	1897.6 3 ⁻ 3483.6 6 ⁺	E2		8.46×10 ⁻⁴		$\alpha(K)=0.000746 \ 11; \ \alpha(L)=8.33\times10^{-5} \ 12; \\ \alpha(M)=1.445\times10^{-5} \ 21; \ \alpha(N)=2.04\times10^{-6} \ 3 \\ \alpha(O)=1.419\times10^{-7} \ 20; \ \alpha(N+)=2.19\times10^{-6} \ 3 \\ \alpha(O)=1.419\times10^{-7} \ 20; \ \alpha(N+)=2.19\times10^{-6} \ 3 \\ \alpha(O)=0.00000000000000000000000000000000000$
	914.8	670	3772.6	6+	2857.8 4+	(E2)		8.27×10 ⁻⁴		Mult.: $\Delta J=2$ transition to 6 ⁺ . $\alpha(K)=0.000729 \ II; \ \alpha(L)=8.14\times10^{-5} \ I2;$ $\alpha(M)=1.412\times10^{-5} \ 20; \ \alpha(N)=2.00\times10^{-6} \ 3$ $\alpha(O)=1.388\times10^{-7} \ 20; \ \alpha(N+)=2.14\times10^{-6} \ 3$ Mult.: $\Delta J=2$ transition to 4 ⁺
	960.2	45	2857.8	4+	1897.6 3-	(E1)		3.12×10 ⁻⁴		$\alpha(K)=0.000276 \ 4; \ \alpha(L)=3.00\times10^{-5} \ 5; \\ \alpha(M)=5.19\times10^{-6} \ 8; \ \alpha(N)=7.37\times10^{-7} \ 11; \\ \alpha(O)=5.22\times10^{-8} \ 8 \\ \alpha(N+)=7.89\times10^{-7} \ 11 \\ Mult : \ Al=1 \ transition to \ 3^{-7}$
ı.	979.2	41	4751.8	$(7,8^+)$	3772.6 6+					$Mutt. \Delta J = 1 transition to J .$
	1006.4 1107.2	13 547	4126.9 2857.8	(4 ⁺) 4 ⁺	3120.5 5 1750.6 2 ⁺	E2(+M3)	-0.03 3	5.36×10 ⁻⁴ 10		α (K)=0.000472 8; α (L)=5.22×10 ⁻⁵ 9; α (M)=9.06×10 ⁻⁶ 16; α (N)=1.284×10 ⁻⁶ 23; α (O)=9.01×10 ⁻⁸ 16 α (N+)=2.18×10 ⁻⁶ 4 Mult: Δ I=2 transition to 2 ⁺ .
	1114.6 1118.1	20 15	4235.1 5507.9	7 ⁻ (7 ⁺ ,8 ⁺)	3120.5 5 ⁻ 4389.8 8 ⁺					
	1179.0 1185.0	3 39	4261.6 3082.6	(5 ⁺ ,6 ⁺) 4 ⁺	3082.6 4 ⁺ 1897.6 3 ⁻	E1(+M2)	+0.02 3	2.44×10 ⁻⁴		$\alpha(K)=0.000186 \ 3; \ \alpha(L)=2.02\times10^{-5} \ 4; \\ \alpha(M)=3.49\times10^{-6} \ 6; \ \alpha(N)=4.97\times10^{-7} \ 9; \\ \alpha(O)=3.53\times10^{-8} \ 6 \\ (M)=2.42\times10^{-5} \ 5.5$
	1222.9	304	3120.5	5-	1897.6 3-	E2+M3	-0.05 3	4.44×10 ⁻⁴ 9		$\alpha(N+)=3.43\times10^{-5} 5$ $\alpha(K)=0.000382 8; \alpha(L)=4.21\times10^{-5} 9;$ $\alpha(M)=7.30\times10^{-6} 15; \alpha(N)=1.037\times10^{-6} 21;$ $\alpha(O)=7.30\times10^{-8} 15$ $\alpha(N+)=1.248\times10^{-5} 18$ Mult.: $\Delta J=2$ transition to 3^{-} .
	1239.4	9	5629.2	(7+ 0+)	4389.8 8 ⁺ 4261.6 (5 ⁺ 6 ⁺)					
	1240.3 1279.4	9 14	3177.0	(7,8) 4 ⁺	4201.0 (3 ,6°) 1897.6 3 ⁻	E1(+M2)	-0.03 3	2.77×10 ⁻⁴ 5		$\begin{aligned} &\alpha(\mathrm{K}) = 0.000163 \ 3; \ \alpha(\mathrm{L}) = 1.76 \times 10^{-5} \ 3; \\ &\alpha(\mathrm{M}) = 3.05 \times 10^{-6} \ 6; \ \alpha(\mathrm{N}) = 4.34 \times 10^{-7} \ 8; \\ &\alpha(\mathrm{O}) = 3.09 \times 10^{-8} \ 6 \\ &\alpha(\mathrm{N}+) = 9.38 \times 10^{-5} \ 14 \end{aligned}$

S

From ENSDF

⁹⁶₄₀Zr₅₆-5

 $^{96}_{40}\mathrm{Zr}_{56}$ -5

$\gamma(^{96}\text{Zr})$ (continued)

E_{γ}^{\dagger}	I_{γ} ‡&	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [#]	α b	$I_{(\gamma+ce)}^{a}$	Comments
1463.0	5	5235.6	$(7,8^+)$	3772.6 6+				
1510.3	7	5900.1		4389.8 8+				
1582.5		1582.5	0^{+}	$0.0 \ 0^+$	E0		1.5	$I_{(\gamma+ce)}$: from $I_{\gamma}(644)$ feeding the 1582.5 level.
1582.9	18	5066.5	$(7^+, 8^+)$	3483.6 6+				
1712.7 ^C	5	4570.5	$(5^{-}, 6^{+})$	2857.8 4+				
1735.3	12	5507.9	$(7^+, 8^+)$	3772.6 6+				
1750.6	1000	1750.6	2+	0.0 0+	E2	3.98×10 ⁻⁴		$\alpha(K)=0.000184 \ 3; \ \alpha(L)=2.01\times10^{-5} \ 3; \ \alpha(M)=3.48\times10^{-6} \ 5; \ \alpha(N)=4.94\times10^{-7} \ 7; \ \alpha(O)=3.52\times10^{-8} \ 5 \ \alpha(N+)=0.000190 \ 3 \ Mult: \ \Lambda=2 \ transition to \ 0^+$
1851.5	6	3749.1	4+	1897.6 3-				Mult. $\Delta J = 2$ transition to 0.
1897.6	57	1897.6	3-	0.0 0+	[E3]	4.40×10 ⁻⁴		α (K)=0.000268 4; α (L)=2.96×10 ⁻⁵ 5; α (M)=5.14×10 ⁻⁶ 8; α (N)=7.30×10 ⁻⁷ 11; α (O)=5.17×10 ⁻⁸ 8 α (N+)=0.0001368 20
2226.2	63	2226.2	2+	0.0 0+	E2	5.51×10 ⁻⁴		α (K)=0.0001184 <i>17</i> ; α (L)=1.282×10 ⁻⁵ <i>18</i> ; α (M)=2.22×10 ⁻⁶ <i>4</i> ; α (N)=3.16×10 ⁻⁷ <i>5</i> ; α (O)=2.26×10 ⁻⁸ <i>4</i> α (N+)=0.000417 <i>6</i> Mult.: Δ J=2 transition to 0 ⁺ .

[†] From energy difference of initial and final levels of 1987StZX, unless indicated otherwise. Some $E\gamma$ from 1987StZX are not consistent with their level energies.

[‡] From 1987StZX, unless indicated otherwise. Uncertainty not given by authors.

From adopted gammas.

^(a) Measured with a curved-crystal diffraction spectrometer (1979Bo26).
^(b) For absolute intensity per 100 decays, multiply by 0.0880.

^{*a*} Absolute intensity per 100 decays.

^b Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^c Placement of transition in the level scheme is uncertain.

96 Y β^- decay (9.6 s) 1987StZX

 ∞

 $^{96}_{40}\mathrm{Zr}_{56}$ -8

 $^{96}_{40}\mathrm{Zr}_{56}$ -8

From ENSDF