96 Y β^- decay (5.34 s) 1990Ma03,1988Ma01,1990Ma45

	Hist	tory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	D. Abriola(a), A. A. Sonzogni	NDS 109, 2501 (2008)	1-Apr-2008

Parent: ⁹⁶Y: E=0.0; $J^{\pi}=0^-$; $T_{1/2}=5.34$ s 5; $Q(\beta^-)=7096\ 23$; % β^- decay=100.0

1975Kh05: measured ce spectra, $T_{1/2}$.

1975Sa15: studied both g.s. and isomeric decay of 96 Y; measured E γ , I γ , $\gamma\gamma$ coin, E β , T_{1/2}.

1988Ma01: E γ , I γ , ce spectra, I γ (t), $\gamma\gamma$ coin, γ -ce coin, and $\gamma\gamma(\theta)$.

1990Ma03: measured E γ , I γ , I γ (t), $\gamma\gamma$ (t) coin, ce- γ coin, $\beta\gamma$ coin, ce spectra.

Other: 1988MaYY.

1990Ma45: measured $T_{1/2}$ using $\beta\gamma$ delayed coin.

⁹⁶Zr Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} #	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
0.0	0^{+}		4737.5 8	$(1,2^+)$	5573.8 6	$(1,2^+)$
1581.34 <i>21</i>	0^{+}		4837.9 <i>3</i>	$(1^{-},2^{+})$	5601.5 6	$(1,2^+)$
1750.60 15	2+		4882.0? 10		5625.6 10	
1897.25 15	3-	50 ps 7	4895.2 7	$(1,2^{+})$	5652.6? 10	
2225.81 17	2+	<10 ps	4914.1? 10	$(1,2^+)$	5701.0 6	
2669.07 20	(2^{+})	-	4929.1 9	$(1,2^{+})$	5719.1 8	$(1,2^+)$
2695.3 <i>3</i>	0^{+}	28 ps 7	5196.6? 10		5741.2? 10	
2925.69 24	0^{+}	20 ps 14	5228.5 6	$(1,2^{+})$	5783.1 8	$(1,2^+)$
3212.37 24	2+		5272.0 6	$(1,2^+)$	5804.5 7	$(1,2^+)$
3450.34 24			5312.2 7		5838.3 10	$(1,2^+)$
3509.4 4	2+		5408.0 7		5847.5 6	$(1,2^+)$
3701.1? 10	$(1,2^+)$		5442.9 5	$(1,2^{+})$	5914.7? 6	$(1,2^+)$
4024.6? 8			5502.2? 8	$(1,2^+)$	5934.6 6	$(1,2^+)$
4258.1 5	3-		5538.9 6	$(1,2^+)$	6143.4? 8	$(1,2^+)$
4512.5 7	$(1,2^+)$		5551.6 6	$(1,2^+)$	6231.6 11	$(1,2^+)$

[†] From a least-squares fit to $E\gamma$ data.

[‡] From Adopted Levels.

[#] From 1990Ma45.

β^- radiations

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft	Comments
(864 23)	6231.6	0.0082 17	5.85 10	av Eβ=298.1 94
(953 23)	6143.4?	0.0035 13	6.38 17	av $E\beta = 335.1 \ 96$
(1161 23)	5934.6	0.029 5	5.78 9	av $E\beta = 422.6~99$
(1181 23)	5914.7?	0.027 5	5.84 9	av $E\beta = 431 \ 10$
(1249 23)	5847.5	0.015 3	6.19 10	av E β =460 10
(1258 23)	5838.3	0.0063 16	6.58 12	av E β =464 10
(1292 23)	5804.5	0.0089 17	6.47 9	av E β =479 10
(1313 23)	5783.1	0.0038 11	6.87 13	av E β =488 10
(1377 23)	5719.1	0.024 4	6.15 8	av E β =516 11
(1395 23)	5701.0	0.010 2	6.55 10	av E β =524 11
(1470 23)	5625.6	0.0040 13	7.04 15	av E β =558 11
(1495 23)	5601.5	0.034 6	6.14 9	av E β =568 11
(1522 23)	5573.8	0.011 2	6.66 9	av E β =581 11
(1544 23)	5551.6	0.045 8	6.07 9	av E β =591 11
(1557 23)	5538.9	0.011 2	6.70 9	av E β =596 11
(1653 23)	5442.9	0.038 6	6.26 8	av E β =639 11

Continued on next page (footnotes at end of table)

$^{96}\mathrm{Y}\,\beta^-$ decay (5.34 s) 1990Ma03,1988Ma01,1990Ma45 (continued)

β^{-} radiations (continued)

E(decay)	E(level)	$I\beta^{-\ddagger\ddagger}$	Log ft	Comments
(1688 23)	5408.0	0.013 2	6.77 8	av E β =655 11
(1784 23)	5312.2	0.015 2	6.80 7	av E β =698 11
(1824 23)	5272.0	0.014 3	6.87 10	av E β =717 11
(1868 23)	5228.5	0.013 3	6.94 11	av E β =737 11
(2167 23)	4929.1	0.022 5	6.98 10	av E β =874 11
(2182 23)	4914.1?	0.009 5	7.38 25	av E β =881 11
(2201 23)	4895.2	0.031 6	6.86 9	av E β =890 11
(2258 23)	4837.9	0.089 14	6.45 7	av E β =917 11
(2359 23)	4737.5	0.011 2	7.43 9	av E β =963 11
(2584 23)	4512.5	0.011 2	7.60 8	av E β =1068 11
(2838 23)	4258.1	0.013 <i>3</i>	7.70 11	av E β =1188 11
(3395 23)	3701.1?	0.012 3	8.07 11	av E β =1452 11
(3587 23)	3509.4	0.002 1	$10.48^{1u} 22$	av $E\beta = 1541 \ II$
(3646 23)	3450.34	0.081 14	7.37 8	av E β =1572 11
(4170 23)	2925.69	0.041 8	7.92 9	av E β =1823 11
(4401 23)	2695.3	0.17 2	7.41 6	av E β =1933 11
(4427 23)	2669.07	0.043 10	9.72 ¹ <i>u</i> 11	av E β =1940 11
(4870 23)	2225.81	0.44 5	8.97 ¹ <i>u</i> 6	av E β =2151 <i>11</i>
(5345 23)	1750.60	1.91 20	8.59 ¹ <i>u</i> 5	av E β =2379 11
(5515 23)	1581.34	1.26 10	6.97 4	av E β =2468 11
(7096 23)	0.0	95.5 <i>5</i>	5.591 8	av E β =3230 11
				E(decay): 7067 30 (1990Ma03), 7120 keV 50 (1980De02) and 7030 keV 70 (1978St02). Iβ ⁻ : 95.2 9 (1988Ma01), 95.0 15 (1975Sa15).

[†] From intensity balance at each level (1990Ma03).
[‡] Absolute intensity per 100 decays.

$\gamma(^{96}\mathrm{Zr})$

Iy normalization: $I_{\gamma}(1750.4) = 2.35\% \ 24 \ (1990 Ma03)$.

 $\boldsymbol{\omega}$

E_{γ}^{\dagger}	I_{γ}^{a}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. ^{&}	δ ^{&}	α^{c}	Comments
146.653 10	32 2	1897.25	3-	1750.60 2+	(E1)		0.0371	$\alpha(K)=0.0327 \ 5; \ \alpha(L)=0.00366 \ 6; \ \alpha(M)=0.000632 \ 9;$ $\alpha(N)=8.84\times10^{-5} \ 13; \ \alpha(O)=5.80\times10^{-6} \ 9$ $\alpha(N+)=9.42\times10^{-5} \ 14$ E _y : from 1979Bo26.
328.7 [‡] 2	22.1 8	2225.81	2+	1897.25 3-	(E1(+M2))	-0.02 5	0.00381 16	$\alpha(K)=0.00336 \ 14; \ \alpha(L)=0.000372 \ 17;$ $\alpha(M)=6.4\times10^{-5} \ 3; \ \alpha(N)=9.1\times10^{-6} \ 5;$ $\alpha(O)=6.2\times10^{-7} \ 3$ $\alpha(N+)=9.7\times10^{-6} \ 5$
469.5 [‡] 2	73 2	2695.3	0+	2225.81 2+	[E2]		0.00507	$\alpha(K)=0.00444 7; \ \alpha(L)=0.000521 8; \alpha(M)=9.05\times10^{-5} 13; \ \alpha(N)=1.268\times10^{-5} 18; \alpha(O)=8.29\times10^{-7} 12 \alpha(N+)=1.351\times10^{-5} 19$
475.3 [‡] 2	80 <i>3</i>	2225.81	2+	1750.60 2+	M1+E2	-0.09 +1-2	0.00361	$\alpha(K)=0.00318 5; \alpha(L)=0.000355 5;\alpha(M)=6.16\times10^{-5} 9; \alpha(N)=8.76\times10^{-6} 13;\alpha(O)=6.19\times10^{-7} 9\alpha(N+)=9.38\times10^{-6} 14$
644.4 [‡] 2	30 1	2225.81	2+	1581.34 0+	E2		0.00203	Mult.,o: D+Q; -1.5 +75-70 from $\gamma(\theta)$ (1988/Md01). $\alpha(K)=0.001781 \ 25; \ \alpha(L)=0.000203 \ 3;$ $\alpha(M)=3.53\times10^{-5} \ 5; \ \alpha(N)=4.97\times10^{-6} \ 7;$ $\alpha(O)=3.36\times10^{-7} \ 5$
699.9 <i>3</i>	7.6 6	2925.69	0+	2225.81 2+	(E2)		1.62×10 ⁻³	$\alpha(N+)=5.51\times10^{-6} - 6$ $\alpha(K)=0.001427 \ 20; \ \alpha(L)=0.0001620 \ 23;$ $\alpha(M)=2.81\times10^{-5} \ 4; \ \alpha(N)=3.96\times10^{-6} \ 6;$ $\alpha(O)=2.70\times10^{-7} \ 4$ $\alpha(N+)=4.24\times10^{-6} \ 6$
771.7 [‡] 2	6.4 [#] 10	2669.07	(2+)	1897.25 3-	(E1+M2)	+0.08 +6-7	0.00050 4	$\alpha(\mathbf{N}+)=1.21\times10^{-6} 0$ $\alpha(\mathbf{K})=0.00044 \ 3; \ \alpha(\mathbf{L})=4.8\times10^{-5} \ 4; \ \alpha(\mathbf{M})=8.4\times10^{-6}$ $6; \ \alpha(\mathbf{N})=1.19\times10^{-6} \ 9; \ \alpha(\mathbf{O})=8.4\times10^{-8} \ 6$ $\alpha(\mathbf{N}+)=1.28\times10^{-6} \ 10$
781.2 [‡] 2	20 3	3450.34		2669.07 (2+)				
918.5 [‡] 2	32 2	2669.07	(2 ⁺)	1750.60 2+	M1,E2		8.13×10 ⁻⁴ <i>13</i>	$\alpha(K)=0.000718 \ 11; \ \alpha(L)=7.95\times10^{-5} \ 16; \\ \alpha(M)=1.38\times10^{-5} \ 3; \ \alpha(N)=1.96\times10^{-6} \ 4; \\ \alpha(O)=1.378\times10^{-7} \ 20 \\ \alpha(N+)=2.09\times10^{-6} \ 4$
1175.0 [#] 3	19 [#] 2	2925.69	0^+	1750.60 2+	(E2)		4.73×10 ⁻⁴	α (K)=0.000413 6; α (L)=4.56×10 ⁻⁵ 7; α (M)=7.90×10 ⁻⁶ 11; α (N)=1.121×10 ⁻⁶ 16;

				$^{96}Y\beta^{-}$ dec	ay (5	1.34 s) 1	990Ma03,198	8Ma01,199	0Ma45 (continued)
						<u>)</u>	/(⁹⁶ Zr) (contin	ued)	
E_{γ}^{\dagger}	I_{γ}^{a}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.&	α ^c	$I_{(\gamma+ce)}^{b}$	Comments
									$\alpha(O) = 7.89 \times 10^{-8} 11$
#	#								$\alpha(N+)=6.06\times10^{-6}$ 9
1225.2# 5	2.4 [#] 10	3450.34	- 1	2225.81	2+				
1315.0 [#] 3	3.3 " 4	3212.37	2+	1897.25	3-				
1332.4# 4	5.5# 10	4258.1	3-	2925.69	0+				
$1462.0^{m} 4$	2.9 " 7	3212.37	2^+	1750.60	2^+	EO		1 41 72	$E_{\rm e}$ weighted eveness of 1591.4.5 (1099) (c01) and 1591.7.5
1381.0 4		1301.34	0	0.0	0	EU		1.41 12	E_{γ} . weighted average of 1581.4 5 (1986)(1801) and 1581.7 5 (1986)(1801).
									Mult.: no γ corresponding to ce was seen (1975Kh05).
									$I_{(\gamma+ce)}$: from 1990Ma03; other: 1.4% 5 (1988Ma01).
1612.1 [#] 4	0.8 [#] 4	3509.4	2^{+}	1897.25	3-				
1625.8 [#] 4	10 3	4837.9	$(1^{-},2^{+})$	3212.37	2^{+}				
1699.6 [#] 4	12 3	3450.34		1750.60	2^{+}				
1750.4 [‡] 2	1000 3	1750.60	2+	0.0	0+	E2	3.98×10 ⁻⁴		$\alpha(K)=0.000184 \ 3; \ \alpha(L)=2.01\times10^{-5} \ 3; \ \alpha(M)=3.48\times10^{-6} \ 5; \\ \alpha(N)=4.94\times10^{-7} \ 7; \ \alpha(O)=3.52\times10^{-8} \ 5 \\ \alpha(N+)=0.000190 \ 3 \\ L \cdot L = 2.35\% \ 24 \ (1000McO2); \ 2.0\% \ 0 \ (1000McO1) $
1897.4 <i>4</i>	6 2	1897.25	3-	0.0	0+	[E3]	4.40×10 ⁻⁴		$\alpha(K)=0.000268 \ 4; \ \alpha(L)=2.96 \times 10^{-5} \ 5; \ \alpha(M)=5.14 \times 10^{-6} \ 8; \ \alpha(N)=7.30 \times 10^{-7} \ 11; \ \alpha(O)=5.17 \times 10^{-8} \ 8 \ \alpha(N+)=0.0001367 \ 20$
1912.1 [#] 4	3.5 [#] 8	4837.9	$(1^{-},2^{+})$	2925.69	0^{+}				
1956.3 ^{#d} 10	1.5 [#] 5	4882.0?	())	2925.69	0^{+}				
2225.6 [‡] 4	137 8	2225.81	2+	0.0	0+	E2	5.50×10 ⁻⁴		α (K)=0.0001185 <i>17</i> ; α (L)=1.283×10 ⁻⁵ <i>18</i> ; α (M)=2.22×10 ⁻⁶ <i>4</i> ; α (N)=3.16×10 ⁻⁷ <i>5</i> ; α (O)=2.26×10 ⁻⁸ <i>4</i> α (N+)=0.000417 <i>6</i>
2274.0 ^{#d} 8	2.2 [#] 8	4024.6?		1750.60	2^{+}				
2940.0 [#] 4	6.0 [#] 15	4837.9	$(1^{-},2^{+})$	1897.25	3-				
3086.9 [#] 7	4.5 7	4837.9	$(1^{-},2^{+})$	1750.60	2^{+}				
3212.9 [#] 7	2.9 16	3212.37	2+	0.0	0^+				
3257.4 7	3.6 8	4837.9	$(1^-, 2^+)$	1581.34	0^+				
3615.2 ^{#d} 10	1.4 [#] 6	5196.6?		1581.34	0^+				
3701.0 10	5.0 [@] 10	3701.1?	$(1,2^+)$	0.0	0^{+}				
3730.8 7	6.2 7	5312.2		1581.34	0^{+}				
3826.6 7	5.6 7	5408.0		1581.34	0+				
3861.7 6	12.0 ^{^w} 13	5442.9	$(1,2^+)$	1581.34	0^+				
3992.2 8 4044 2 10	1.9.5	5575.8 5625.6	$(1,2^{+})$	1581.34	0+				
$4071.2^{\#d}$ 10	$1.4^{\#}$ 5	5652.67		1581 34	0^{+}				
		2022.01		1001.01					

4

From ENSDF

 $\gamma(^{96}\text{Zr})$ (continued)

E_i(level)

 J_i^{π}

 $E_f \quad J_f^{\pi}$

 I_{γ}^{a}

		L
		L
		L
		L
		L
		L
		L
		L
		L
		L
		L
		L

					_					
4119.6 6	4.4 5	5701.0		1581.34	0^+	5502.0 ^d 8	5.2 8	5502.2?	$(1,2^+)$	$0.0 \ 0^+$
4159.8 ^d 10	0.9 4	5741.2?		1581.34	0^+	5538.7 6	4.5 7	5538.9	$(1,2^{+})$	$0.0 \ 0^+$
4162.9 [#] 10	5.8 11	5914.7?	$(1,2^+)$	1750.60	2^{+}	5551.4 6	19.0 24	5551.6	$(1,2^+)$	$0.0 \ 0^+$
4334.2 ^d 15	1.1 <i>3</i>	5914.7?	$(1,2^{+})$	1581.34	0^+	5573.7 8	2.6 5	5573.8	$(1,2^+)$	$0.0 \ 0^+$
4512.4 7	4.7 [@] 9	4512.5	$(1,2^+)$	0.0	0^+	5601.3 6	14.4 18	5601.5	$(1,2^+)$	$0.0 \ 0^+$
4562.7 ^d 10	0.9 4	6143.4?	$(1,2^{+})$	1581.34	0^+	5718.9 8	10.3 13	5719.1	$(1,2^{+})$	$0.0 \ 0^+$
4737.4 8	4.5 8	4737.5	$(1,2^+)$	0.0	0^{+}	5782.9 8	1.6 4	5783.1	$(1,2^+)$	$0.0 \ 0^+$
4839.2 8	10.1 19	4837.9	$(1^-, 2^+)$	0.0	0^+	5804.3 7	3.8 6	5804.5	$(1,2^+)$	$0.0 \ 0^+$
4895.1 7	13.4 [@] 22	4895.2	$(1,2^+)$	0.0	0^+	5838.1 <i>10</i>	2.7 6	5838.3	$(1,2^+)$	$0.0 \ 0^+$
4914.0 10	3.9 [@] 20	4914.1?	$(1,2^{+})$	0.0	0^+	5847.3 6	6.3 10	5847.5	$(1,2^{+})$	$0.0 \ 0^+$
4929.0 9	9.4 16	4929.1	$(1,2^+)$	0.0	0^{+}	5914.9 8	5.6 10	5914.7?	$(1,2^{+})$	$0.0 \ 0^+$
5228.3 6	5.5 9	5228.5	$(1,2^+)$	0.0	0^{+}	5934.4 6	12.2 15	5934.6	$(1,2^+)$	$0.0 \ 0^+$
5271.8 6	6.1 9	5272.0	$(1,2^{+})$	0.0	0^+	6141.6 <i>14</i>	1.5 5	6143.4?	$(1,2^+)$	$0.0 \ 0^+$
5442.5 7	4.3 [@] 6	5442.9	$(1,2^+)$	0.0	0^+	6231.4 11	3.5 6	6231.6	$(1,2^+)$	$0.0 \ 0^+$

 J_f^{π}

 \mathbf{E}_{f}

 E_{γ}^{\dagger}

[†] From 1990Ma03, except where noted otherwise.

 E_{ν}^{\dagger}

S

[‡] From 1988Ma01. [#] From $\gamma\gamma$ or ce- γ coincidence.

 I_{γ}^{a}

[@] Mixed with a first-or second-escape peak from transitions of higher energy; intensity of the impurity line was subtracted.

& From adopted gammas.

^{*a*} For absolute intensity per 100 decays, multiply by 0.00235 24.

 J_i^{π}

 E_i (level)

^b Absolute intensity per 100 decays.

^c Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^d Placement of transition in the level scheme is uncertain.

